希尔伯特空间算子的数值半径估计和数值半径不等式

IF 1.8 3区 数学 Q1 MATHEMATICS
Mohammad H. M. Rashid, Feras Bani-Ahmad
{"title":"希尔伯特空间算子的数值半径估计和数值半径不等式","authors":"Mohammad H. M. Rashid, Feras Bani-Ahmad","doi":"10.3934/math.20231347","DOIUrl":null,"url":null,"abstract":"<abstract><p>We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if $ {\\bf A}_i, {\\bf B}_i, {\\bf X}_i\\in \\mathcal{B}(\\mathcal{H}) $ ($ i = 1, 2, \\cdots, n $), $ m\\in \\mathbb N $, $ p, q &amp;gt; 1 $ with $ \\frac{1}{p}+\\frac{1}{q} = 1 $ and $ \\phi $ and $ \\psi $ are non-negative functions on $ [0, \\infty) $ which are continuous such that $ \\phi(t)\\psi(t) = t $ for all $ t \\in [0, \\infty) $, then</p> <p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} w^{2r}\\left({\\sum\\limits_{i = 1}^{n} {\\bf X}_i {\\bf A}_i^m {\\bf B}_i}\\right)\\leq \\frac{n^{2r-1}}{m}\\sum\\limits_{j = 1}^{m}\\left\\Vert{\\sum\\limits_{i = 1}^{n}\\frac{1}{p}S_{i, j}^{pr}+\\frac{1}{q}T_{i, j}^{qr}}\\right\\Vert-r_0\\inf\\limits_{\\left\\Vert{\\xi}\\right\\Vert = 1}\\rho(\\xi), \\end{equation*} $\\end{document} </tex-math></disp-formula></p> <p>where $ r_0 = \\min\\{\\frac{1}{p}, \\frac{1}{q}\\} $, $ S_{i, j} = {\\bf X}_i\\phi^2\\left({\\left\\vert{ {\\bf A}_i^{j*}}\\right\\vert}\\right) {\\bf X}_i^* $, $ T_{i, j} = \\left({ {\\bf A}_i^{m-j} {\\bf B}_i}\\right)^*\\psi^2\\left({\\left\\vert{ {\\bf A}_i^j}\\right\\vert}\\right) {\\bf A}_i^{m-j} {\\bf B}_i $ and</p> <p><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\rho(\\xi) = \\frac{n^{2r-1}}{m}\\sum\\limits_{j = 1}^{m}\\sum\\limits_{i = 1}^{n}\\left({\\left&amp;lt;{S_{i, j}^r\\xi, \\xi}\\right&amp;gt;^{\\frac{p}{2}}-\\left&amp;lt;{T_{i, j}^r\\xi, \\xi}\\right&amp;gt;^{\\frac{q}{2}}}\\right)^2. $\\end{document} </tex-math></disp-formula></p> </abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"42 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality\",\"authors\":\"Mohammad H. M. Rashid, Feras Bani-Ahmad\",\"doi\":\"10.3934/math.20231347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if $ {\\\\bf A}_i, {\\\\bf B}_i, {\\\\bf X}_i\\\\in \\\\mathcal{B}(\\\\mathcal{H}) $ ($ i = 1, 2, \\\\cdots, n $), $ m\\\\in \\\\mathbb N $, $ p, q &amp;gt; 1 $ with $ \\\\frac{1}{p}+\\\\frac{1}{q} = 1 $ and $ \\\\phi $ and $ \\\\psi $ are non-negative functions on $ [0, \\\\infty) $ which are continuous such that $ \\\\phi(t)\\\\psi(t) = t $ for all $ t \\\\in [0, \\\\infty) $, then</p> <p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} w^{2r}\\\\left({\\\\sum\\\\limits_{i = 1}^{n} {\\\\bf X}_i {\\\\bf A}_i^m {\\\\bf B}_i}\\\\right)\\\\leq \\\\frac{n^{2r-1}}{m}\\\\sum\\\\limits_{j = 1}^{m}\\\\left\\\\Vert{\\\\sum\\\\limits_{i = 1}^{n}\\\\frac{1}{p}S_{i, j}^{pr}+\\\\frac{1}{q}T_{i, j}^{qr}}\\\\right\\\\Vert-r_0\\\\inf\\\\limits_{\\\\left\\\\Vert{\\\\xi}\\\\right\\\\Vert = 1}\\\\rho(\\\\xi), \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p> <p>where $ r_0 = \\\\min\\\\{\\\\frac{1}{p}, \\\\frac{1}{q}\\\\} $, $ S_{i, j} = {\\\\bf X}_i\\\\phi^2\\\\left({\\\\left\\\\vert{ {\\\\bf A}_i^{j*}}\\\\right\\\\vert}\\\\right) {\\\\bf X}_i^* $, $ T_{i, j} = \\\\left({ {\\\\bf A}_i^{m-j} {\\\\bf B}_i}\\\\right)^*\\\\psi^2\\\\left({\\\\left\\\\vert{ {\\\\bf A}_i^j}\\\\right\\\\vert}\\\\right) {\\\\bf A}_i^{m-j} {\\\\bf B}_i $ and</p> <p><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\rho(\\\\xi) = \\\\frac{n^{2r-1}}{m}\\\\sum\\\\limits_{j = 1}^{m}\\\\sum\\\\limits_{i = 1}^{n}\\\\left({\\\\left&amp;lt;{S_{i, j}^r\\\\xi, \\\\xi}\\\\right&amp;gt;^{\\\\frac{p}{2}}-\\\\left&amp;lt;{T_{i, j}^r\\\\xi, \\\\xi}\\\\right&amp;gt;^{\\\\frac{q}{2}}}\\\\right)^2. $\\\\end{document} </tex-math></disp-formula></p> </abstract>\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231347\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231347","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

<abstract><p>We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if $ {\bf A}_i, {\bf B}_i, {\bf X}_i\in \mathcal{B}(\mathcal{H}) $ ($ i = 1, 2, \cdots, n $), $ m\in \mathbb N $, $ p, q &gt; 1 $ with $ \frac{1}{p}+\frac{1}{q} = 1 $ and $ \phi $ and $ \psi $ are non-negative functions on $ [0, \infty) $ which are continuous such that $ \phi(t)\psi(t) = t $ for all $ t \in [0, \infty) $, then</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} w^{2r}\left({\sum\limits_{i = 1}^{n} {\bf X}_i {\bf A}_i^m {\bf B}_i}\right)\leq \frac{n^{2r-1}}{m}\sum\limits_{j = 1}^{m}\left\Vert{\sum\limits_{i = 1}^{n}\frac{1}{p}S_{i, j}^{pr}+\frac{1}{q}T_{i, j}^{qr}}\right\Vert-r_0\inf\limits_{\left\Vert{\xi}\right\Vert = 1}\rho(\xi), \end{equation*} $\end{document} </tex-math></disp-formula></p> <p>where $ r_0 = \min\{\frac{1}{p}, \frac{1}{q}\} $, $ S_{i, j} = {\bf X}_i\phi^2\left({\left\vert{ {\bf A}_i^{j*}}\right\vert}\right) {\bf X}_i^* $, $ T_{i, j} = \left({ {\bf A}_i^{m-j} {\bf B}_i}\right)^*\psi^2\left({\left\vert{ {\bf A}_i^j}\right\vert}\right) {\bf A}_i^{m-j} {\bf B}_i $ and</p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \rho(\xi) = \frac{n^{2r-1}}{m}\sum\limits_{j = 1}^{m}\sum\limits_{i = 1}^{n}\left({\left&lt;{S_{i, j}^r\xi, \xi}\right&gt;^{\frac{p}{2}}-\left&lt;{T_{i, j}^r\xi, \xi}\right&gt;^{\frac{q}{2}}}\right)^2. $\end{document} </tex-math></disp-formula></p> </abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An estimate for the numerical radius of the Hilbert space operators and a numerical radius inequality

We provide a number of sharp inequalities involving the usual operator norms of Hilbert space operators and powers of the numerical radii. Based on the traditional convexity inequalities for nonnegative real numbers and some generalize earlier numerical radius inequalities, operator. Precisely, we prove that if $ {\bf A}_i, {\bf B}_i, {\bf X}_i\in \mathcal{B}(\mathcal{H}) $ ($ i = 1, 2, \cdots, n $), $ m\in \mathbb N $, $ p, q &gt; 1 $ with $ \frac{1}{p}+\frac{1}{q} = 1 $ and $ \phi $ and $ \psi $ are non-negative functions on $ [0, \infty) $ which are continuous such that $ \phi(t)\psi(t) = t $ for all $ t \in [0, \infty) $, then

where $ r_0 = \min\{\frac{1}{p}, \frac{1}{q}\} $, $ S_{i, j} = {\bf X}_i\phi^2\left({\left\vert{ {\bf A}_i^{j*}}\right\vert}\right) {\bf X}_i^* $, $ T_{i, j} = \left({ {\bf A}_i^{m-j} {\bf B}_i}\right)^*\psi^2\left({\left\vert{ {\bf A}_i^j}\right\vert}\right) {\bf A}_i^{m-j} {\bf B}_i $ and

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信