{"title":"变暖的河流普遍脱氧","authors":"Wei Zhi, Christoph Klingler, Jiangtao Liu, Li Li","doi":"10.1038/s41558-023-01793-3","DOIUrl":null,"url":null,"abstract":"Deoxygenation is commonly observed in oceans and lakes but less expected in shallower, flowing rivers. Here we reconstructed daily water temperature and dissolved oxygen in 580 rivers across the United States and 216 rivers in Central Europe by training a deep learning model using temporal weather and water quality data and static watershed attributes (for example, hydro-climate, topography, land use, soil). Results revealed persistent warming in 87% and deoxygenation in 70% of the rivers. Urban rivers demonstrated the most rapid warming, whereas agricultural rivers experienced the slowest warming but fastest deoxygenation. Mean deoxygenation rates (−0.038 ± 0.026 mg l−1 decade−1) were higher than those in oceans but lower than those in temperate lakes. These rates, however, may be underestimated, as training data are from grab samples collected during the day when photosynthesis peaks. Projected future rates are between 1.6 and 2.5 times higher than historical rates, indicating significant ramifications for water quality and aquatic ecosystems. Warming waters in a changing climate have led to declining oxygen levels in oceans and lakes; the impact on rivers has been less clear. This study shows that widespread deoxygenation in rivers in the United States and Central Europe may accelerate under climate change and influence water quality.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":"13 10","pages":"1105-1113"},"PeriodicalIF":29.6000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widespread deoxygenation in warming rivers\",\"authors\":\"Wei Zhi, Christoph Klingler, Jiangtao Liu, Li Li\",\"doi\":\"10.1038/s41558-023-01793-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deoxygenation is commonly observed in oceans and lakes but less expected in shallower, flowing rivers. Here we reconstructed daily water temperature and dissolved oxygen in 580 rivers across the United States and 216 rivers in Central Europe by training a deep learning model using temporal weather and water quality data and static watershed attributes (for example, hydro-climate, topography, land use, soil). Results revealed persistent warming in 87% and deoxygenation in 70% of the rivers. Urban rivers demonstrated the most rapid warming, whereas agricultural rivers experienced the slowest warming but fastest deoxygenation. Mean deoxygenation rates (−0.038 ± 0.026 mg l−1 decade−1) were higher than those in oceans but lower than those in temperate lakes. These rates, however, may be underestimated, as training data are from grab samples collected during the day when photosynthesis peaks. Projected future rates are between 1.6 and 2.5 times higher than historical rates, indicating significant ramifications for water quality and aquatic ecosystems. Warming waters in a changing climate have led to declining oxygen levels in oceans and lakes; the impact on rivers has been less clear. This study shows that widespread deoxygenation in rivers in the United States and Central Europe may accelerate under climate change and influence water quality.\",\"PeriodicalId\":18974,\"journal\":{\"name\":\"Nature Climate Change\",\"volume\":\"13 10\",\"pages\":\"1105-1113\"},\"PeriodicalIF\":29.6000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Climate Change\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41558-023-01793-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-023-01793-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Deoxygenation is commonly observed in oceans and lakes but less expected in shallower, flowing rivers. Here we reconstructed daily water temperature and dissolved oxygen in 580 rivers across the United States and 216 rivers in Central Europe by training a deep learning model using temporal weather and water quality data and static watershed attributes (for example, hydro-climate, topography, land use, soil). Results revealed persistent warming in 87% and deoxygenation in 70% of the rivers. Urban rivers demonstrated the most rapid warming, whereas agricultural rivers experienced the slowest warming but fastest deoxygenation. Mean deoxygenation rates (−0.038 ± 0.026 mg l−1 decade−1) were higher than those in oceans but lower than those in temperate lakes. These rates, however, may be underestimated, as training data are from grab samples collected during the day when photosynthesis peaks. Projected future rates are between 1.6 and 2.5 times higher than historical rates, indicating significant ramifications for water quality and aquatic ecosystems. Warming waters in a changing climate have led to declining oxygen levels in oceans and lakes; the impact on rivers has been less clear. This study shows that widespread deoxygenation in rivers in the United States and Central Europe may accelerate under climate change and influence water quality.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.