{"title":"洋葱皮水提物作为光伏电池生物废弃物敏化剂的研究","authors":"Rısna Ernı Yatı ADU, Gebhardus Djugian GELYAMAN","doi":"10.18596/jotcsa.1260709","DOIUrl":null,"url":null,"abstract":"In the present paper, two natural photosensitizers extracted from red onion peels have been experimentally studied to sensitize the photovoltaic cells. The two natural dyes were prepared overnight, soaking the red onion peel powder in distilled water without acidification (UW) and acidified water (AW). Dye characteristics were identified by UV-vis Spectrophotometer and FT-IR Spectrophotometer. The cell performance was assessed by calculating the produced voltage and current by multi-meter. Red onion peel dyes absorb visible light at a wavelength of 507 nm and promote electron transfer into the porous semiconductor surface. A higher power conversion efficiency (η=0.0535 %) was featured by an unacidified solvent with a short circuit current density (Jsc) of 0.96 mA.cm-2, an open circuit voltage (Voc) of 338 mV and a fill factor of 0.2576. This paper presents a fascinating preliminary study to develop renewable and sustainable energy sources using bulky biowaste.","PeriodicalId":17402,"journal":{"name":"Journal of the Turkish Chemical Society, Section A: Chemistry","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aqueous Extract of Onion Peels as A Biowaste-Based Sensitizer for Photovoltaic Cells\",\"authors\":\"Rısna Ernı Yatı ADU, Gebhardus Djugian GELYAMAN\",\"doi\":\"10.18596/jotcsa.1260709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, two natural photosensitizers extracted from red onion peels have been experimentally studied to sensitize the photovoltaic cells. The two natural dyes were prepared overnight, soaking the red onion peel powder in distilled water without acidification (UW) and acidified water (AW). Dye characteristics were identified by UV-vis Spectrophotometer and FT-IR Spectrophotometer. The cell performance was assessed by calculating the produced voltage and current by multi-meter. Red onion peel dyes absorb visible light at a wavelength of 507 nm and promote electron transfer into the porous semiconductor surface. A higher power conversion efficiency (η=0.0535 %) was featured by an unacidified solvent with a short circuit current density (Jsc) of 0.96 mA.cm-2, an open circuit voltage (Voc) of 338 mV and a fill factor of 0.2576. This paper presents a fascinating preliminary study to develop renewable and sustainable energy sources using bulky biowaste.\",\"PeriodicalId\":17402,\"journal\":{\"name\":\"Journal of the Turkish Chemical Society, Section A: Chemistry\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Turkish Chemical Society, Section A: Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18596/jotcsa.1260709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Turkish Chemical Society, Section A: Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18596/jotcsa.1260709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
Aqueous Extract of Onion Peels as A Biowaste-Based Sensitizer for Photovoltaic Cells
In the present paper, two natural photosensitizers extracted from red onion peels have been experimentally studied to sensitize the photovoltaic cells. The two natural dyes were prepared overnight, soaking the red onion peel powder in distilled water without acidification (UW) and acidified water (AW). Dye characteristics were identified by UV-vis Spectrophotometer and FT-IR Spectrophotometer. The cell performance was assessed by calculating the produced voltage and current by multi-meter. Red onion peel dyes absorb visible light at a wavelength of 507 nm and promote electron transfer into the porous semiconductor surface. A higher power conversion efficiency (η=0.0535 %) was featured by an unacidified solvent with a short circuit current density (Jsc) of 0.96 mA.cm-2, an open circuit voltage (Voc) of 338 mV and a fill factor of 0.2576. This paper presents a fascinating preliminary study to develop renewable and sustainable energy sources using bulky biowaste.