通过或然率表的 f-发散计算广义克拉梅尔系数

IF 1.4 4区 计算机科学 Q2 STATISTICS & PROBABILITY
Wataru Urasaki, Tomoyuki Nakagawa, Tomotaka Momozaki, Sadao Tomizawa
{"title":"通过或然率表的 f-发散计算广义克拉梅尔系数","authors":"Wataru Urasaki,&nbsp;Tomoyuki Nakagawa,&nbsp;Tomotaka Momozaki,&nbsp;Sadao Tomizawa","doi":"10.1007/s11634-023-00560-8","DOIUrl":null,"url":null,"abstract":"<div><p>Various measures in two-way contingency table analysis have been proposed to express the strength of association between row and column variables in contingency tables. Tomizawa et al. (2004) proposed more general measures, including Cramér’s coefficient, using the power-divergence. In this paper, we propose measures using the <i>f</i>-divergence that has a wider class than the power-divergence. Unlike statistical hypothesis tests, these measures provide quantification of the association structure in contingency tables. The contribution of our study is proving that a measure applying a function that satisfies the condition of the <i>f</i>-divergence has desirable properties for measuring the strength of association in contingency tables. With this contribution, we can easily construct a new measure using a divergence that has essential properties for the analyst. For example, we conducted numerical experiments with a measure applying the <span>\\(\\theta\\)</span>-divergence. Furthermore, we can give further interpretation of the association between the row and column variables in the contingency table, which could not be obtained with the conventional one. We also show a relationship between our proposed measures and the correlation coefficient in a bivariate normal distribution of latent variables in the contingency tables.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 4","pages":"893 - 910"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-023-00560-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Cramér’s coefficient via f-divergence for contingency tables\",\"authors\":\"Wataru Urasaki,&nbsp;Tomoyuki Nakagawa,&nbsp;Tomotaka Momozaki,&nbsp;Sadao Tomizawa\",\"doi\":\"10.1007/s11634-023-00560-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Various measures in two-way contingency table analysis have been proposed to express the strength of association between row and column variables in contingency tables. Tomizawa et al. (2004) proposed more general measures, including Cramér’s coefficient, using the power-divergence. In this paper, we propose measures using the <i>f</i>-divergence that has a wider class than the power-divergence. Unlike statistical hypothesis tests, these measures provide quantification of the association structure in contingency tables. The contribution of our study is proving that a measure applying a function that satisfies the condition of the <i>f</i>-divergence has desirable properties for measuring the strength of association in contingency tables. With this contribution, we can easily construct a new measure using a divergence that has essential properties for the analyst. For example, we conducted numerical experiments with a measure applying the <span>\\\\(\\\\theta\\\\)</span>-divergence. Furthermore, we can give further interpretation of the association between the row and column variables in the contingency table, which could not be obtained with the conventional one. We also show a relationship between our proposed measures and the correlation coefficient in a bivariate normal distribution of latent variables in the contingency tables.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 4\",\"pages\":\"893 - 910\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11634-023-00560-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-023-00560-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-023-00560-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在双向或然表分析中,人们提出了各种测量方法来表示或然表中行变量和列变量之间的关联强度。Tomizawa 等人(2004 年)利用幂级数发散提出了包括克拉梅尔系数在内的更通用的度量方法。在本文中,我们提出了使用 f-发散度的度量方法,它比幂-发散度具有更广泛的类别。与统计假设检验不同的是,这些度量方法可以量化或然率表中的关联结构。我们研究的贡献在于证明了应用满足 f-发散条件的函数的测量方法具有测量或然率表中关联强度的理想特性。有了这一贡献,我们就能利用发散轻松构建出一种新的度量,这种度量对分析者来说具有基本特性。例如,我们用一个应用(\theta\)-发散的测量方法进行了数值实验。此外,我们还可以进一步解释或然表中行变量和列变量之间的关联,而传统的或然表是无法做到这一点的。我们还展示了我们提出的测量方法与或然率表中潜变量二元正态分布中相关系数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Cramér’s coefficient via f-divergence for contingency tables

Various measures in two-way contingency table analysis have been proposed to express the strength of association between row and column variables in contingency tables. Tomizawa et al. (2004) proposed more general measures, including Cramér’s coefficient, using the power-divergence. In this paper, we propose measures using the f-divergence that has a wider class than the power-divergence. Unlike statistical hypothesis tests, these measures provide quantification of the association structure in contingency tables. The contribution of our study is proving that a measure applying a function that satisfies the condition of the f-divergence has desirable properties for measuring the strength of association in contingency tables. With this contribution, we can easily construct a new measure using a divergence that has essential properties for the analyst. For example, we conducted numerical experiments with a measure applying the \(\theta\)-divergence. Furthermore, we can give further interpretation of the association between the row and column variables in the contingency table, which could not be obtained with the conventional one. We also show a relationship between our proposed measures and the correlation coefficient in a bivariate normal distribution of latent variables in the contingency tables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
6.20%
发文量
45
审稿时长
>12 weeks
期刊介绍: The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信