{"title":"高速低雷诺数低压涡轮叶栅的Piv测量","authors":"Mizuki Okada, Loris Simonasis, Gustavo Lopes, Sergio Lavagnoli","doi":"10.1115/1.4063674","DOIUrl":null,"url":null,"abstract":"Abstract Particle image velocimetry (PIV) measurements in the blade-to-blade (B2B) plane and cascade outlet plane (COP) of a high-speed low-pressure turbine (LPT) cascade were performed at engine-representative outlet Mach number (0.70-0.95), and Reynolds number (70k-120k) under steady flow conditions. The freestream turbulence characteristics were imposed by means of a passive turbulence grid. The PIV results on the B2B plane were compared against five-hole probe (5HP) and Reynolds-averaged Navier-Stokes (RANS) computations to assess the validity of measurement and simulation techniques in the engine-relevant LPT cascade flows. The PIV captured the wake depth and width measured by the 5HP whereas the RANS displayed an overprediction of the wake Mach number deficit. The 5HP was found to impose sinewave fluctuations of the measured flow angle downstream, around three times higher than PIV. Additionally, PIV estimated turbulence intensity (TI) in the cascade, showing TI decay along a streamline. At the highest Mach number, a peak TI occurred past a shock wave. Measurements of the outlet flow field highlighted a high TI in the secondary flow region whereas high degree of anisotropy (DA) was registered in the boundary of the secondary flow and freestream regions. The contribution of the streamwise fluctuation component was found to be less than the crosswise and radial components in the freestream region. Increasing the cascade outlet Mach number, the contribution of streamwise fluctuation to the DA was observed to decrease.","PeriodicalId":49966,"journal":{"name":"Journal of Turbomachinery-Transactions of the Asme","volume":"9 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PIV MEASUREMENTS IN A HIGH-SPEED LOW-REYNOLDS LOW-PRESSURE TURBINE CASCADE\",\"authors\":\"Mizuki Okada, Loris Simonasis, Gustavo Lopes, Sergio Lavagnoli\",\"doi\":\"10.1115/1.4063674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Particle image velocimetry (PIV) measurements in the blade-to-blade (B2B) plane and cascade outlet plane (COP) of a high-speed low-pressure turbine (LPT) cascade were performed at engine-representative outlet Mach number (0.70-0.95), and Reynolds number (70k-120k) under steady flow conditions. The freestream turbulence characteristics were imposed by means of a passive turbulence grid. The PIV results on the B2B plane were compared against five-hole probe (5HP) and Reynolds-averaged Navier-Stokes (RANS) computations to assess the validity of measurement and simulation techniques in the engine-relevant LPT cascade flows. The PIV captured the wake depth and width measured by the 5HP whereas the RANS displayed an overprediction of the wake Mach number deficit. The 5HP was found to impose sinewave fluctuations of the measured flow angle downstream, around three times higher than PIV. Additionally, PIV estimated turbulence intensity (TI) in the cascade, showing TI decay along a streamline. At the highest Mach number, a peak TI occurred past a shock wave. Measurements of the outlet flow field highlighted a high TI in the secondary flow region whereas high degree of anisotropy (DA) was registered in the boundary of the secondary flow and freestream regions. The contribution of the streamwise fluctuation component was found to be less than the crosswise and radial components in the freestream region. Increasing the cascade outlet Mach number, the contribution of streamwise fluctuation to the DA was observed to decrease.\",\"PeriodicalId\":49966,\"journal\":{\"name\":\"Journal of Turbomachinery-Transactions of the Asme\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbomachinery-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063674\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbomachinery-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063674","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
PIV MEASUREMENTS IN A HIGH-SPEED LOW-REYNOLDS LOW-PRESSURE TURBINE CASCADE
Abstract Particle image velocimetry (PIV) measurements in the blade-to-blade (B2B) plane and cascade outlet plane (COP) of a high-speed low-pressure turbine (LPT) cascade were performed at engine-representative outlet Mach number (0.70-0.95), and Reynolds number (70k-120k) under steady flow conditions. The freestream turbulence characteristics were imposed by means of a passive turbulence grid. The PIV results on the B2B plane were compared against five-hole probe (5HP) and Reynolds-averaged Navier-Stokes (RANS) computations to assess the validity of measurement and simulation techniques in the engine-relevant LPT cascade flows. The PIV captured the wake depth and width measured by the 5HP whereas the RANS displayed an overprediction of the wake Mach number deficit. The 5HP was found to impose sinewave fluctuations of the measured flow angle downstream, around three times higher than PIV. Additionally, PIV estimated turbulence intensity (TI) in the cascade, showing TI decay along a streamline. At the highest Mach number, a peak TI occurred past a shock wave. Measurements of the outlet flow field highlighted a high TI in the secondary flow region whereas high degree of anisotropy (DA) was registered in the boundary of the secondary flow and freestream regions. The contribution of the streamwise fluctuation component was found to be less than the crosswise and radial components in the freestream region. Increasing the cascade outlet Mach number, the contribution of streamwise fluctuation to the DA was observed to decrease.
期刊介绍:
The Journal of Turbomachinery publishes archival-quality, peer-reviewed technical papers that advance the state-of-the-art of turbomachinery technology related to gas turbine engines. The broad scope of the subject matter includes the fluid dynamics, heat transfer, and aeromechanics technology associated with the design, analysis, modeling, testing, and performance of turbomachinery. Emphasis is placed on gas-path technologies associated with axial compressors, centrifugal compressors, and turbines.
Topics: Aerodynamic design, analysis, and test of compressor and turbine blading; Compressor stall, surge, and operability issues; Heat transfer phenomena and film cooling design, analysis, and testing in turbines; Aeromechanical instabilities; Computational fluid dynamics (CFD) applied to turbomachinery, boundary layer development, measurement techniques, and cavity and leaking flows.