{"title":"蛋白酶体在限制与蛋白质积累相关的细胞应激中的作用","authors":"Kate A. Kragness, Darci J. Trader","doi":"10.1002/ijch.202300120","DOIUrl":null,"url":null,"abstract":"Abstract The proteasome is comprised of multiple subunits that catalyze the degradation of proteins to maintain cellular homeostasis. The proteasome targets protein substrates by two different pathways. The ubiquitin‐dependent pathway requires proteins to be labeled with a ubiquitin tag to signal for degradation by the 26S isoform of the proteasome. Protein degradation through this pathway declines during age progression. The ubiquitin‐independent pathway utilizes the 20S proteasome isoform. It can degrade misfolded and intrinsically disordered proteins to decrease cellular stress. Age‐related protein accumulation and aggregation can occur due to the decreased activity and expression of the proteasome. Protein accumulation causes increased cellular stress which can contribute to disease progression. Increasing proteasome activity could serve as a solution to eliminating and preventing protein accumulation. Studies have shown the value of the proteasome as a therapeutic entity to mitigate cellular stress. This perspective explores the link between proteasome activity and cellular stress caused by age‐related misfolded protein accumulation.","PeriodicalId":14686,"journal":{"name":"Israel Journal of Chemistry","volume":"48 2","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of the Proteasome in Limiting Cellular Stress Associated with Protein Accumulation\",\"authors\":\"Kate A. Kragness, Darci J. Trader\",\"doi\":\"10.1002/ijch.202300120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The proteasome is comprised of multiple subunits that catalyze the degradation of proteins to maintain cellular homeostasis. The proteasome targets protein substrates by two different pathways. The ubiquitin‐dependent pathway requires proteins to be labeled with a ubiquitin tag to signal for degradation by the 26S isoform of the proteasome. Protein degradation through this pathway declines during age progression. The ubiquitin‐independent pathway utilizes the 20S proteasome isoform. It can degrade misfolded and intrinsically disordered proteins to decrease cellular stress. Age‐related protein accumulation and aggregation can occur due to the decreased activity and expression of the proteasome. Protein accumulation causes increased cellular stress which can contribute to disease progression. Increasing proteasome activity could serve as a solution to eliminating and preventing protein accumulation. Studies have shown the value of the proteasome as a therapeutic entity to mitigate cellular stress. This perspective explores the link between proteasome activity and cellular stress caused by age‐related misfolded protein accumulation.\",\"PeriodicalId\":14686,\"journal\":{\"name\":\"Israel Journal of Chemistry\",\"volume\":\"48 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ijch.202300120\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ijch.202300120","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Role of the Proteasome in Limiting Cellular Stress Associated with Protein Accumulation
Abstract The proteasome is comprised of multiple subunits that catalyze the degradation of proteins to maintain cellular homeostasis. The proteasome targets protein substrates by two different pathways. The ubiquitin‐dependent pathway requires proteins to be labeled with a ubiquitin tag to signal for degradation by the 26S isoform of the proteasome. Protein degradation through this pathway declines during age progression. The ubiquitin‐independent pathway utilizes the 20S proteasome isoform. It can degrade misfolded and intrinsically disordered proteins to decrease cellular stress. Age‐related protein accumulation and aggregation can occur due to the decreased activity and expression of the proteasome. Protein accumulation causes increased cellular stress which can contribute to disease progression. Increasing proteasome activity could serve as a solution to eliminating and preventing protein accumulation. Studies have shown the value of the proteasome as a therapeutic entity to mitigate cellular stress. This perspective explores the link between proteasome activity and cellular stress caused by age‐related misfolded protein accumulation.
期刊介绍:
The fledgling State of Israel began to publish its scientific activity in 1951 under the general heading of Bulletin of the Research Council of Israel, which quickly split into sections to accommodate various fields in the growing academic community. In 1963, the Bulletin ceased publication and independent journals were born, with Section A becoming the new Israel Journal of Chemistry.
The Israel Journal of Chemistry is the official journal of the Israel Chemical Society. Effective from Volume 50 (2010) it is published by Wiley-VCH.
The Israel Journal of Chemistry is an international and peer-reviewed publication forum for Special Issues on timely research topics in all fields of chemistry: from biochemistry through organic and inorganic chemistry to polymer, physical and theoretical chemistry, including all interdisciplinary topics. Each topical issue is edited by one or several Guest Editors and primarily contains invited Review articles. Communications and Full Papers may be published occasionally, if they fit with the quality standards of the journal. The publication language is English and the journal is published twelve times a year.