James Wickham, Stephen V. Stehman, Daniel G. Sorenson, Leila Gass, Jon A. Dewitz
{"title":"NLCD 2019年美国周边土地覆盖专题精度评估","authors":"James Wickham, Stephen V. Stehman, Daniel G. Sorenson, Leila Gass, Jon A. Dewitz","doi":"10.1080/15481603.2023.2181143","DOIUrl":null,"url":null,"abstract":"The National Land Cover Database (NLCD), a product suite produced through the MultiResolution Land Characteristics (MRLC) consortium, is an operational land cover monitoring program. Starting from a base year of 2001, NLCD releases a land cover database every 2–3-years. The recent release of NLCD2019 extends the database to 18 years. We implemented a stratified random sample to collect land cover reference data for the 2016 and 2019 components of the NLCD2019 database at Level II and Level I of the classification hierarchy. For both dates, Level II land cover overall accuracies (OA) were 77.5% ± 1% (± value is the standard error) when agreement was defined as a match between the map label and primary reference label only, and increased to 87.1% ± 0.7% when agreement was defined as a match between the map label and either the primary or alternate reference label. At Level I of the classification hierarchy, land cover OA was 83.1% ± 0.9% for both 2016 and 2019 when agreement was defined as a match between the map label and primary reference label only, and increased to 90.3% ± 0.7% when agreement also included the alternate reference label. The Level II and Level I OA for the 2016 land cover in the NLCD2019 database were 5% higher compared to the 2016 land cover component of the NLCD2016 database when agreement was defined as a match between the map label and primary reference label only. No improvement was realized by the NLCD2019 database when agreement also included the alternate reference label. User’s accuracies (UA) for forest loss and grass gain were>70% when agreement included either the primary or alternate label, and UA was generally<50% for all other change themes. Producer’s accuracies (PA) were>70% for grass loss and gain and water gain and generally<50% for the other change themes. We conducted a post-analysis review for map-reference agreement to identify patterns of disagreement, and these findings are discussed in the context of potential adjustments to mapping and reference data collection procedures that may lead to improved map accuracy going forward.","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":"84 1","pages":"0"},"PeriodicalIF":6.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"108","resultStr":"{\"title\":\"Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States\",\"authors\":\"James Wickham, Stephen V. Stehman, Daniel G. Sorenson, Leila Gass, Jon A. Dewitz\",\"doi\":\"10.1080/15481603.2023.2181143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The National Land Cover Database (NLCD), a product suite produced through the MultiResolution Land Characteristics (MRLC) consortium, is an operational land cover monitoring program. Starting from a base year of 2001, NLCD releases a land cover database every 2–3-years. The recent release of NLCD2019 extends the database to 18 years. We implemented a stratified random sample to collect land cover reference data for the 2016 and 2019 components of the NLCD2019 database at Level II and Level I of the classification hierarchy. For both dates, Level II land cover overall accuracies (OA) were 77.5% ± 1% (± value is the standard error) when agreement was defined as a match between the map label and primary reference label only, and increased to 87.1% ± 0.7% when agreement was defined as a match between the map label and either the primary or alternate reference label. At Level I of the classification hierarchy, land cover OA was 83.1% ± 0.9% for both 2016 and 2019 when agreement was defined as a match between the map label and primary reference label only, and increased to 90.3% ± 0.7% when agreement also included the alternate reference label. The Level II and Level I OA for the 2016 land cover in the NLCD2019 database were 5% higher compared to the 2016 land cover component of the NLCD2016 database when agreement was defined as a match between the map label and primary reference label only. No improvement was realized by the NLCD2019 database when agreement also included the alternate reference label. User’s accuracies (UA) for forest loss and grass gain were>70% when agreement included either the primary or alternate label, and UA was generally<50% for all other change themes. Producer’s accuracies (PA) were>70% for grass loss and gain and water gain and generally<50% for the other change themes. We conducted a post-analysis review for map-reference agreement to identify patterns of disagreement, and these findings are discussed in the context of potential adjustments to mapping and reference data collection procedures that may lead to improved map accuracy going forward.\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"108\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2023.2181143\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15481603.2023.2181143","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Thematic accuracy assessment of the NLCD 2019 land cover for the conterminous United States
The National Land Cover Database (NLCD), a product suite produced through the MultiResolution Land Characteristics (MRLC) consortium, is an operational land cover monitoring program. Starting from a base year of 2001, NLCD releases a land cover database every 2–3-years. The recent release of NLCD2019 extends the database to 18 years. We implemented a stratified random sample to collect land cover reference data for the 2016 and 2019 components of the NLCD2019 database at Level II and Level I of the classification hierarchy. For both dates, Level II land cover overall accuracies (OA) were 77.5% ± 1% (± value is the standard error) when agreement was defined as a match between the map label and primary reference label only, and increased to 87.1% ± 0.7% when agreement was defined as a match between the map label and either the primary or alternate reference label. At Level I of the classification hierarchy, land cover OA was 83.1% ± 0.9% for both 2016 and 2019 when agreement was defined as a match between the map label and primary reference label only, and increased to 90.3% ± 0.7% when agreement also included the alternate reference label. The Level II and Level I OA for the 2016 land cover in the NLCD2019 database were 5% higher compared to the 2016 land cover component of the NLCD2016 database when agreement was defined as a match between the map label and primary reference label only. No improvement was realized by the NLCD2019 database when agreement also included the alternate reference label. User’s accuracies (UA) for forest loss and grass gain were>70% when agreement included either the primary or alternate label, and UA was generally<50% for all other change themes. Producer’s accuracies (PA) were>70% for grass loss and gain and water gain and generally<50% for the other change themes. We conducted a post-analysis review for map-reference agreement to identify patterns of disagreement, and these findings are discussed in the context of potential adjustments to mapping and reference data collection procedures that may lead to improved map accuracy going forward.
期刊介绍:
GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.