Veera Harsha Vardhan Jilludimudi, Daniel Zhou, Eric Rubstov, Alexander Gonzalez, Will Daknis, Erin Gunn, David Prawel
{"title":"用原位数据对熔融挤压件质量进行无损评价","authors":"Veera Harsha Vardhan Jilludimudi, Daniel Zhou, Eric Rubstov, Alexander Gonzalez, Will Daknis, Erin Gunn, David Prawel","doi":"10.1108/rpj-04-2023-0122","DOIUrl":null,"url":null,"abstract":"Purpose This study aims to collect real-time, in situ data from polymer melt extrusion (ME) 3D printing and use only the collected data to non-destructively identify printed parts that contain defects. Design/methodology/approach A set of sensors was created to collect real-time, in situ data from polymer ME 3D printing. A variance analysis was completed to identify an “acceptable” range for filament diameter on a popular desktop 3D printer. These data were used as the basis of a quality evaluation process to non-destructively identify spatial regions of printed parts in multi-part builds that contain defects. Findings Anomalous parts were correctly identified non-destructively using only in situ collected data. Research limitations/implications This methodology was developed by varying the filament diameter, one of the most common reasons for print failure in ME. Numerous other printing parameters are known to create faults in melt extruded parts, and this methodology can be extended to analyze other parameters. Originality/value To the best of the authors’ knowledge, this is the first report of a non-destructive evaluation of 3D-printed part quality using only in situ data in ME. The value is in improving part quality and reliability in ME, thereby reducing 3D printing part errors, plastic waste and the associated cost of time and material.","PeriodicalId":20981,"journal":{"name":"Rapid Prototyping Journal","volume":"38 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-destructive evaluation of melt-extruded part quality using <i>in situ</i> data\",\"authors\":\"Veera Harsha Vardhan Jilludimudi, Daniel Zhou, Eric Rubstov, Alexander Gonzalez, Will Daknis, Erin Gunn, David Prawel\",\"doi\":\"10.1108/rpj-04-2023-0122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose This study aims to collect real-time, in situ data from polymer melt extrusion (ME) 3D printing and use only the collected data to non-destructively identify printed parts that contain defects. Design/methodology/approach A set of sensors was created to collect real-time, in situ data from polymer ME 3D printing. A variance analysis was completed to identify an “acceptable” range for filament diameter on a popular desktop 3D printer. These data were used as the basis of a quality evaluation process to non-destructively identify spatial regions of printed parts in multi-part builds that contain defects. Findings Anomalous parts were correctly identified non-destructively using only in situ collected data. Research limitations/implications This methodology was developed by varying the filament diameter, one of the most common reasons for print failure in ME. Numerous other printing parameters are known to create faults in melt extruded parts, and this methodology can be extended to analyze other parameters. Originality/value To the best of the authors’ knowledge, this is the first report of a non-destructive evaluation of 3D-printed part quality using only in situ data in ME. The value is in improving part quality and reliability in ME, thereby reducing 3D printing part errors, plastic waste and the associated cost of time and material.\",\"PeriodicalId\":20981,\"journal\":{\"name\":\"Rapid Prototyping Journal\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rapid Prototyping Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/rpj-04-2023-0122\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rapid Prototyping Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/rpj-04-2023-0122","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Non-destructive evaluation of melt-extruded part quality using in situ data
Purpose This study aims to collect real-time, in situ data from polymer melt extrusion (ME) 3D printing and use only the collected data to non-destructively identify printed parts that contain defects. Design/methodology/approach A set of sensors was created to collect real-time, in situ data from polymer ME 3D printing. A variance analysis was completed to identify an “acceptable” range for filament diameter on a popular desktop 3D printer. These data were used as the basis of a quality evaluation process to non-destructively identify spatial regions of printed parts in multi-part builds that contain defects. Findings Anomalous parts were correctly identified non-destructively using only in situ collected data. Research limitations/implications This methodology was developed by varying the filament diameter, one of the most common reasons for print failure in ME. Numerous other printing parameters are known to create faults in melt extruded parts, and this methodology can be extended to analyze other parameters. Originality/value To the best of the authors’ knowledge, this is the first report of a non-destructive evaluation of 3D-printed part quality using only in situ data in ME. The value is in improving part quality and reliability in ME, thereby reducing 3D printing part errors, plastic waste and the associated cost of time and material.
期刊介绍:
Rapid Prototyping Journal concentrates on development in a manufacturing environment but covers applications in other areas, such as medicine and construction. All papers published in this field are scattered over a wide range of international publications, none of which actually specializes in this particular discipline, this journal is a vital resource for anyone involved in additive manufacturing. It draws together important refereed papers on all aspects of AM from distinguished sources all over the world, to give a truly international perspective on this dynamic and exciting area.
-Benchmarking – certification and qualification in AM-
Mass customisation in AM-
Design for AM-
Materials aspects-
Reviews of processes/applications-
CAD and other software aspects-
Enhancement of existing processes-
Integration with design process-
Management implications-
New AM processes-
Novel applications of AM parts-
AM for tooling-
Medical applications-
Reverse engineering in relation to AM-
Additive & Subtractive hybrid manufacturing-
Industrialisation