螺旋电极电凝法收获盐渍杜氏藻,制备HHO气体作为有前途的氢燃料

IF 1 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
{"title":"螺旋电极电凝法收获盐渍杜氏藻,制备HHO气体作为有前途的氢燃料","authors":"","doi":"10.30955/gnj.005289","DOIUrl":null,"url":null,"abstract":"<p>Biofuels obtained from renewable sources are the only alternative in the global economy from a sustainable point of view. Microalgae have shown tremendous potential as a major source of biomass production that can be used as biofuels. At the same time, gas hydrogen is a non-polluting energy source because it is produced from renewable sources. This study aims to analyze the harvesting efficiency of Dunaliella salina using electrocoagulation with a helix electrode and having HHO gas as hydrogen fuel. D salina harvesting using an EC reactor made of acrylic is done on a batch scale. Helix-shaped type 304 stainless steel is the cathode, and solid cylindrically-shaped Fe is the anode. The voltage set is 20 Volts, while the electrolysis time is varied between 1. 5. 10. 15. 20. 25 and 30 minutes. The harvesting efficiency of D salina using electrocoagulation with a helix electrode was the highest at 84.74%. The highest concentration of dissolved hydrogen gas was 1.753 ppm. The highest volume of HHO gas was 1978 mL resulting from a 30-minute electrocoagulation with a helix electrode, 20-volt voltage. Nanoscale glovaries are formed on the electrode through heterogeneous nucleation at the solid-liquid interface. After nucleation, the nanobubbles grow, and the buoyancy forces of the growing bubbles cause gas release from the cathode surface. This process continues until it causes many bubbles to produce 1978 mL HHO gas for 30 minutes. During the study, the convex HHO gas formed helped remove coagulated D salina floc through electro-flotation. When the time of D salina harvesting using electrocoagulation with a helix electrode significantly affects D salina harvesting efficiency, gas HHO volume, pH, and temperature, harvesting time has no significant effect on dissolved hydrogen gas concentration and ORP.</p>&#x0D;","PeriodicalId":55087,"journal":{"name":"Global Nest Journal","volume":"112 3","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harvesting of Dunaliella salina using electrocoagulation with helix electrode and producing HHO gas as promising Hydrogen fuel\",\"authors\":\"\",\"doi\":\"10.30955/gnj.005289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biofuels obtained from renewable sources are the only alternative in the global economy from a sustainable point of view. Microalgae have shown tremendous potential as a major source of biomass production that can be used as biofuels. At the same time, gas hydrogen is a non-polluting energy source because it is produced from renewable sources. This study aims to analyze the harvesting efficiency of Dunaliella salina using electrocoagulation with a helix electrode and having HHO gas as hydrogen fuel. D salina harvesting using an EC reactor made of acrylic is done on a batch scale. Helix-shaped type 304 stainless steel is the cathode, and solid cylindrically-shaped Fe is the anode. The voltage set is 20 Volts, while the electrolysis time is varied between 1. 5. 10. 15. 20. 25 and 30 minutes. The harvesting efficiency of D salina using electrocoagulation with a helix electrode was the highest at 84.74%. The highest concentration of dissolved hydrogen gas was 1.753 ppm. The highest volume of HHO gas was 1978 mL resulting from a 30-minute electrocoagulation with a helix electrode, 20-volt voltage. Nanoscale glovaries are formed on the electrode through heterogeneous nucleation at the solid-liquid interface. After nucleation, the nanobubbles grow, and the buoyancy forces of the growing bubbles cause gas release from the cathode surface. This process continues until it causes many bubbles to produce 1978 mL HHO gas for 30 minutes. During the study, the convex HHO gas formed helped remove coagulated D salina floc through electro-flotation. When the time of D salina harvesting using electrocoagulation with a helix electrode significantly affects D salina harvesting efficiency, gas HHO volume, pH, and temperature, harvesting time has no significant effect on dissolved hydrogen gas concentration and ORP.</p>&#x0D;\",\"PeriodicalId\":55087,\"journal\":{\"name\":\"Global Nest Journal\",\"volume\":\"112 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Nest Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30955/gnj.005289\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nest Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.005289","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从可持续的角度来看,从可再生资源中获得的生物燃料是全球经济中唯一的替代品。微藻作为可作为生物燃料的生物质生产的主要来源显示出巨大的潜力。同时,氢气是一种无污染的能源,因为它是由可再生能源生产的。本研究旨在分析以HHO气体为氢燃料的螺旋电极电凝法对盐藻的收获效率。用丙烯酸树脂制成的EC反应器进行盐盐的成批回收。螺旋形304不锈钢为阴极,实心圆柱形铁为阳极。设定的电压为20伏,电解时间在1。5. 10. 15. 20.25到30分钟。螺旋电极电凝法对盐藻的收获效率最高,达84.74%。溶解氢气的最高浓度为1.753 ppm。HHO气体的最高体积为1978 mL,由20伏电压的螺旋电极电凝30分钟产生。通过固液界面的非均相成核,在电极上形成纳米级球形。成核后,纳米气泡长大,气泡的浮力使气体从阴极表面释放出来。这个过程持续30分钟,直到产生许多气泡,产生1978毫升HHO气体。在研究过程中,形成的凸状HHO气体有助于电浮选去除凝固的D盐絮团。螺旋电极电凝法收集D盐的时间显著影响D盐的收集效率、气体HHO体积、pH和温度,而收集时间对溶解氢气浓度和ORP无显著影响。</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harvesting of Dunaliella salina using electrocoagulation with helix electrode and producing HHO gas as promising Hydrogen fuel

Biofuels obtained from renewable sources are the only alternative in the global economy from a sustainable point of view. Microalgae have shown tremendous potential as a major source of biomass production that can be used as biofuels. At the same time, gas hydrogen is a non-polluting energy source because it is produced from renewable sources. This study aims to analyze the harvesting efficiency of Dunaliella salina using electrocoagulation with a helix electrode and having HHO gas as hydrogen fuel. D salina harvesting using an EC reactor made of acrylic is done on a batch scale. Helix-shaped type 304 stainless steel is the cathode, and solid cylindrically-shaped Fe is the anode. The voltage set is 20 Volts, while the electrolysis time is varied between 1. 5. 10. 15. 20. 25 and 30 minutes. The harvesting efficiency of D salina using electrocoagulation with a helix electrode was the highest at 84.74%. The highest concentration of dissolved hydrogen gas was 1.753 ppm. The highest volume of HHO gas was 1978 mL resulting from a 30-minute electrocoagulation with a helix electrode, 20-volt voltage. Nanoscale glovaries are formed on the electrode through heterogeneous nucleation at the solid-liquid interface. After nucleation, the nanobubbles grow, and the buoyancy forces of the growing bubbles cause gas release from the cathode surface. This process continues until it causes many bubbles to produce 1978 mL HHO gas for 30 minutes. During the study, the convex HHO gas formed helped remove coagulated D salina floc through electro-flotation. When the time of D salina harvesting using electrocoagulation with a helix electrode significantly affects D salina harvesting efficiency, gas HHO volume, pH, and temperature, harvesting time has no significant effect on dissolved hydrogen gas concentration and ORP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Nest Journal
Global Nest Journal 环境科学-环境科学
CiteScore
1.50
自引率
9.10%
发文量
100
审稿时长
>12 weeks
期刊介绍: Global Network of Environmental Science and Technology Journal (Global NEST Journal) is a scientific source of information for professionals in a wide range of environmental disciplines. The Journal is published both in print and online. Global NEST Journal constitutes an international effort of scientists, technologists, engineers and other interested groups involved in all scientific and technological aspects of the environment, as well, as in application techniques aiming at the development of sustainable solutions. Its main target is to support and assist the dissemination of information regarding the most contemporary methods for improving quality of life through the development and application of technologies and policies friendly to the environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信