图的广义x联接及其自同构

IF 0.6 3区 数学 Q3 MATHEMATICS
Javad Bagherian, Hanieh Memarzadeh
{"title":"图的广义x联接及其自同构","authors":"Javad Bagherian, Hanieh Memarzadeh","doi":"10.26493/1855-3974.2619.06c","DOIUrl":null,"url":null,"abstract":"In this paper, we first introduce a new product of finite graphs as a generalization of the X-join of graphs. We then give the necessary and sufficient conditions under which a graph has the generalized X-join structure. As a main result, we compute the full automorphism groups of the family of graphs that have the generalized X-join structure.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":"40 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized X-join of graphs and their automorphisms\",\"authors\":\"Javad Bagherian, Hanieh Memarzadeh\",\"doi\":\"10.26493/1855-3974.2619.06c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first introduce a new product of finite graphs as a generalization of the X-join of graphs. We then give the necessary and sufficient conditions under which a graph has the generalized X-join structure. As a main result, we compute the full automorphism groups of the family of graphs that have the generalized X-join structure.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2619.06c\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2619.06c","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文首先引入了有限图的一种新的乘积,作为图的x连接的推广。然后给出图具有广义x连接结构的充分必要条件。作为主要结果,我们计算了具有广义x连接结构的图族的完全自同构群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized X-join of graphs and their automorphisms
In this paper, we first introduce a new product of finite graphs as a generalization of the X-join of graphs. We then give the necessary and sufficient conditions under which a graph has the generalized X-join structure. As a main result, we compute the full automorphism groups of the family of graphs that have the generalized X-join structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ars Mathematica Contemporanea
Ars Mathematica Contemporanea MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信