应用于生物机电一体化的光纤传感器技术进展

Mohomad Aqeel Abdhul Rahuman, Nipun Shantha Kahatapitiya, Viraj Niroshan Amarakoon, Udaya Wijenayake, Bhagya Nathali Silva, Mansik Jeon, Jeehyun Kim, Naresh Kumar Ravichandran, Ruchire Eranga Wijesinghe
{"title":"应用于生物机电一体化的光纤传感器技术进展","authors":"Mohomad Aqeel Abdhul Rahuman, Nipun Shantha Kahatapitiya, Viraj Niroshan Amarakoon, Udaya Wijenayake, Bhagya Nathali Silva, Mansik Jeon, Jeehyun Kim, Naresh Kumar Ravichandran, Ruchire Eranga Wijesinghe","doi":"10.3390/technologies11060157","DOIUrl":null,"url":null,"abstract":"Bio-mechatronics is an interdisciplinary scientific field that emphasizes the integration of biology and mechatronics to discover innovative solutions for numerous biomedical applications. The broad application spectrum of bio-mechatronics consists of minimally invasive surgeries, rehabilitation, development of prosthetics, and soft wearables to find engineering solutions for the human body. Fiber-optic-based sensors have recently become an indispensable part of bio-mechatronics systems, which are essential for position detection and control, monitoring measurements, compliance control, and various feedback applications. As a result, significant advancements have been introduced for designing and developing fiber-optic-based sensors in the past decade. This review discusses recent technological advancements in fiber-optical sensors, which have been potentially adapted for numerous bio-mechatronic applications. It also encompasses fundamental principles, different types of fiber-optical sensors based on recent development strategies, and characterizations of fiber Bragg gratings, optical fiber force myography, polymer optical fibers, optical tactile sensors, and Fabry–Perot interferometric applications. Hence, robust knowledge can be obtained regarding the technological enhancements in fiber-optical sensors for bio-mechatronics-based interdisciplinary developments. Therefore, this review offers a comprehensive exploration of recent technological advances in fiber-optical sensors for bio-mechatronics. It provides insights into their potential to revolutionize biomedical and bio-mechatronics applications, ultimately contributing to improved patient outcomes and healthcare innovation.","PeriodicalId":472933,"journal":{"name":"Technologies (Basel)","volume":"57 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Technological Progress of Fiber-Optical Sensors for Bio-Mechatronics Applications\",\"authors\":\"Mohomad Aqeel Abdhul Rahuman, Nipun Shantha Kahatapitiya, Viraj Niroshan Amarakoon, Udaya Wijenayake, Bhagya Nathali Silva, Mansik Jeon, Jeehyun Kim, Naresh Kumar Ravichandran, Ruchire Eranga Wijesinghe\",\"doi\":\"10.3390/technologies11060157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-mechatronics is an interdisciplinary scientific field that emphasizes the integration of biology and mechatronics to discover innovative solutions for numerous biomedical applications. The broad application spectrum of bio-mechatronics consists of minimally invasive surgeries, rehabilitation, development of prosthetics, and soft wearables to find engineering solutions for the human body. Fiber-optic-based sensors have recently become an indispensable part of bio-mechatronics systems, which are essential for position detection and control, monitoring measurements, compliance control, and various feedback applications. As a result, significant advancements have been introduced for designing and developing fiber-optic-based sensors in the past decade. This review discusses recent technological advancements in fiber-optical sensors, which have been potentially adapted for numerous bio-mechatronic applications. It also encompasses fundamental principles, different types of fiber-optical sensors based on recent development strategies, and characterizations of fiber Bragg gratings, optical fiber force myography, polymer optical fibers, optical tactile sensors, and Fabry–Perot interferometric applications. Hence, robust knowledge can be obtained regarding the technological enhancements in fiber-optical sensors for bio-mechatronics-based interdisciplinary developments. Therefore, this review offers a comprehensive exploration of recent technological advances in fiber-optical sensors for bio-mechatronics. It provides insights into their potential to revolutionize biomedical and bio-mechatronics applications, ultimately contributing to improved patient outcomes and healthcare innovation.\",\"PeriodicalId\":472933,\"journal\":{\"name\":\"Technologies (Basel)\",\"volume\":\"57 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies (Basel)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies11060157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies (Basel)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11060157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物机电一体化是一个跨学科的科学领域,强调生物学和机电一体化的融合,为众多生物医学应用发现创新的解决方案。生物机电一体化的广泛应用范围包括微创手术,康复,假肢的开发和柔软的可穿戴设备,以寻找人体的工程解决方案。近年来,基于光纤的传感器已成为生物机电系统中不可缺少的一部分,它在位置检测和控制、监测测量、顺应性控制和各种反馈应用中都是必不可少的。因此,在过去十年中,设计和开发基于光纤的传感器取得了重大进展。本文讨论了光纤传感器的最新技术进展,这些传感器已经有可能适应于许多生物机电应用。它还包括基本原理,基于最新发展策略的不同类型的光纤传感器,以及光纤布拉格光栅,光纤力肌图,聚合物光纤,光学触觉传感器和法布里-珀罗干涉测量应用的特性。因此,可以获得关于基于生物机电一体化跨学科发展的光纤传感器技术增强的强大知识。因此,本文综述了生物机电用光纤传感器的最新技术进展。它提供了对其革命性生物医学和生物机电一体化应用的潜力的见解,最终有助于改善患者的治疗效果和医疗保健创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Technological Progress of Fiber-Optical Sensors for Bio-Mechatronics Applications
Bio-mechatronics is an interdisciplinary scientific field that emphasizes the integration of biology and mechatronics to discover innovative solutions for numerous biomedical applications. The broad application spectrum of bio-mechatronics consists of minimally invasive surgeries, rehabilitation, development of prosthetics, and soft wearables to find engineering solutions for the human body. Fiber-optic-based sensors have recently become an indispensable part of bio-mechatronics systems, which are essential for position detection and control, monitoring measurements, compliance control, and various feedback applications. As a result, significant advancements have been introduced for designing and developing fiber-optic-based sensors in the past decade. This review discusses recent technological advancements in fiber-optical sensors, which have been potentially adapted for numerous bio-mechatronic applications. It also encompasses fundamental principles, different types of fiber-optical sensors based on recent development strategies, and characterizations of fiber Bragg gratings, optical fiber force myography, polymer optical fibers, optical tactile sensors, and Fabry–Perot interferometric applications. Hence, robust knowledge can be obtained regarding the technological enhancements in fiber-optical sensors for bio-mechatronics-based interdisciplinary developments. Therefore, this review offers a comprehensive exploration of recent technological advances in fiber-optical sensors for bio-mechatronics. It provides insights into their potential to revolutionize biomedical and bio-mechatronics applications, ultimately contributing to improved patient outcomes and healthcare innovation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信