{"title":"从二氨基硅烷到硅烷:了解二价硅化合物的稳定性","authors":"Kristian Torstensen, and , Abhik Ghosh*, ","doi":"10.1021/acsorginorgau.3c00041","DOIUrl":null,"url":null,"abstract":"<p >Since the discovery of decamethylsilicocene over three decades ago, chemists have successfully isolated a variety of divalent silicon compounds by orchestrating steric and electronic effects to their advantage. Two broad strategies of electronic stabilization appear to have been widely deployed, namely, π-conjugation as in diaminosilylenes and π-complexation as in decamethylsilicocene and silapyramidanes. Herein, we attempted to identify quantitative metrics for the electronic stabilization of silylenes. Singlet–triplet gaps and electron affinities, both physical observables, proved useful in this regard. Thus, the most stable silylenes exhibit unusually large singlet–triplet gaps and very low or negative gas-phase electron affinities. Both metrics signify low electrophilicity, i.e., a low susceptibility to nucleophilic attack. The chemical significance of the ionization potential associated with the Si-based lone pair, on the other hand, remains unclear.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 1","pages":"102–105"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00041","citationCount":"0","resultStr":"{\"title\":\"From Diaminosilylenes to Silapyramidanes: Making Sense of the Stability of Divalent Silicon Compounds\",\"authors\":\"Kristian Torstensen, and , Abhik Ghosh*, \",\"doi\":\"10.1021/acsorginorgau.3c00041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Since the discovery of decamethylsilicocene over three decades ago, chemists have successfully isolated a variety of divalent silicon compounds by orchestrating steric and electronic effects to their advantage. Two broad strategies of electronic stabilization appear to have been widely deployed, namely, π-conjugation as in diaminosilylenes and π-complexation as in decamethylsilicocene and silapyramidanes. Herein, we attempted to identify quantitative metrics for the electronic stabilization of silylenes. Singlet–triplet gaps and electron affinities, both physical observables, proved useful in this regard. Thus, the most stable silylenes exhibit unusually large singlet–triplet gaps and very low or negative gas-phase electron affinities. Both metrics signify low electrophilicity, i.e., a low susceptibility to nucleophilic attack. The chemical significance of the ionization potential associated with the Si-based lone pair, on the other hand, remains unclear.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":\"4 1\",\"pages\":\"102–105\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.3c00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
From Diaminosilylenes to Silapyramidanes: Making Sense of the Stability of Divalent Silicon Compounds
Since the discovery of decamethylsilicocene over three decades ago, chemists have successfully isolated a variety of divalent silicon compounds by orchestrating steric and electronic effects to their advantage. Two broad strategies of electronic stabilization appear to have been widely deployed, namely, π-conjugation as in diaminosilylenes and π-complexation as in decamethylsilicocene and silapyramidanes. Herein, we attempted to identify quantitative metrics for the electronic stabilization of silylenes. Singlet–triplet gaps and electron affinities, both physical observables, proved useful in this regard. Thus, the most stable silylenes exhibit unusually large singlet–triplet gaps and very low or negative gas-phase electron affinities. Both metrics signify low electrophilicity, i.e., a low susceptibility to nucleophilic attack. The chemical significance of the ionization potential associated with the Si-based lone pair, on the other hand, remains unclear.
期刊介绍:
ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.