Pedro Waterton, Sarah Woodland, Graham Pearson, Simon Hansen Serre, Kristoffer Szilas
{"title":"探索 186Os/188Os 精度屏障:DROsS 参考材料的新推荐值以及对混合 1011 和 1012 Ω 放大器阵列的评估","authors":"Pedro Waterton, Sarah Woodland, Graham Pearson, Simon Hansen Serre, Kristoffer Szilas","doi":"10.1111/ggr.12532","DOIUrl":null,"url":null,"abstract":"<p>We present high precision negative ion thermal ionisation mass spectrometry (N-TIMS) Os isotope measurement results for the DROsS isotope reference material (iCRM), to investigate the limits on the precision of TIMS-based <sup>186</sup>Os/<sup>188</sup>Os results. We used analytical conditions previously highlighted to optimise precision, present a new flexible data processing protocol, and measured <sup>184</sup>Os intensities on a Faraday Cup equipped with an amplifier using a 10<sup>12</sup> Ω resistor. Despite a measurement procedure that minimised uncertainty contributions from counting statistics and Johnson-Nyquist noise, the intermediate measurement precision of our approach does not significantly improve on previous high precision Os isotope measurements, with the exception of <sup>184</sup>Os/<sup>188</sup>Os. This is probably due to uncertainties in measured amplifier gain factors, which are greater when using mixed arrays of 10<sup>11</sup> and 10<sup>12</sup> Ω resistors than when using 10<sup>11</sup> Ω resistors alone, though Faraday Cup deterioration could also contribute. We propose that multi-dynamic Os isotope measurements could largely eliminate both of these uncertainties. Our <sup>184</sup>Os/<sup>188</sup>Os measurement results are the most precise yet, yielding <sup>184</sup>Os/<sup>188</sup>Os = 0.0013036 ± 0.0000007 (2<i>s</i>, <i>n</i> = 38). Additionally, we average our data with published data to recommend the following isotope ratios for DROsS: <sup>186</sup>Os/<sup>188</sup>Os = 0.1199319 ± 0.0000024, <sup>187</sup>Os/<sup>188</sup>Os = 0.1609227 ± 0.0000022, <sup>189</sup>Os/<sup>188</sup>Os = 1.219709 ± 0.000010, <sup>190</sup>Os/<sup>188</sup>Os = 1.983793 ± 0.000011.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 1","pages":"109-132"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12532","citationCount":"0","resultStr":"{\"title\":\"Probing the 186Os/188Os Precision Barrier: New Recommended Values for the DROsS Reference Material and an Assessment of Mixed 1011 and 1012 Ω Amplifier Arrays\",\"authors\":\"Pedro Waterton, Sarah Woodland, Graham Pearson, Simon Hansen Serre, Kristoffer Szilas\",\"doi\":\"10.1111/ggr.12532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present high precision negative ion thermal ionisation mass spectrometry (N-TIMS) Os isotope measurement results for the DROsS isotope reference material (iCRM), to investigate the limits on the precision of TIMS-based <sup>186</sup>Os/<sup>188</sup>Os results. We used analytical conditions previously highlighted to optimise precision, present a new flexible data processing protocol, and measured <sup>184</sup>Os intensities on a Faraday Cup equipped with an amplifier using a 10<sup>12</sup> Ω resistor. Despite a measurement procedure that minimised uncertainty contributions from counting statistics and Johnson-Nyquist noise, the intermediate measurement precision of our approach does not significantly improve on previous high precision Os isotope measurements, with the exception of <sup>184</sup>Os/<sup>188</sup>Os. This is probably due to uncertainties in measured amplifier gain factors, which are greater when using mixed arrays of 10<sup>11</sup> and 10<sup>12</sup> Ω resistors than when using 10<sup>11</sup> Ω resistors alone, though Faraday Cup deterioration could also contribute. We propose that multi-dynamic Os isotope measurements could largely eliminate both of these uncertainties. Our <sup>184</sup>Os/<sup>188</sup>Os measurement results are the most precise yet, yielding <sup>184</sup>Os/<sup>188</sup>Os = 0.0013036 ± 0.0000007 (2<i>s</i>, <i>n</i> = 38). Additionally, we average our data with published data to recommend the following isotope ratios for DROsS: <sup>186</sup>Os/<sup>188</sup>Os = 0.1199319 ± 0.0000024, <sup>187</sup>Os/<sup>188</sup>Os = 0.1609227 ± 0.0000022, <sup>189</sup>Os/<sup>188</sup>Os = 1.219709 ± 0.000010, <sup>190</sup>Os/<sup>188</sup>Os = 1.983793 ± 0.000011.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"48 1\",\"pages\":\"109-132\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ggr.12532\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12532\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12532","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Probing the 186Os/188Os Precision Barrier: New Recommended Values for the DROsS Reference Material and an Assessment of Mixed 1011 and 1012 Ω Amplifier Arrays
We present high precision negative ion thermal ionisation mass spectrometry (N-TIMS) Os isotope measurement results for the DROsS isotope reference material (iCRM), to investigate the limits on the precision of TIMS-based 186Os/188Os results. We used analytical conditions previously highlighted to optimise precision, present a new flexible data processing protocol, and measured 184Os intensities on a Faraday Cup equipped with an amplifier using a 1012 Ω resistor. Despite a measurement procedure that minimised uncertainty contributions from counting statistics and Johnson-Nyquist noise, the intermediate measurement precision of our approach does not significantly improve on previous high precision Os isotope measurements, with the exception of 184Os/188Os. This is probably due to uncertainties in measured amplifier gain factors, which are greater when using mixed arrays of 1011 and 1012 Ω resistors than when using 1011 Ω resistors alone, though Faraday Cup deterioration could also contribute. We propose that multi-dynamic Os isotope measurements could largely eliminate both of these uncertainties. Our 184Os/188Os measurement results are the most precise yet, yielding 184Os/188Os = 0.0013036 ± 0.0000007 (2s, n = 38). Additionally, we average our data with published data to recommend the following isotope ratios for DROsS: 186Os/188Os = 0.1199319 ± 0.0000024, 187Os/188Os = 0.1609227 ± 0.0000022, 189Os/188Os = 1.219709 ± 0.000010, 190Os/188Os = 1.983793 ± 0.000011.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.