Nicole Folmann Lima, Giselle Maria Maciel, Isabela de Andrade Arruda Fernandes, Charles Windson Isidoro Haminiuk
{"title":"优化细菌纳米纤维素的生产工艺:对生长和生物活性化合物的影响","authors":"Nicole Folmann Lima, Giselle Maria Maciel, Isabela de Andrade Arruda Fernandes, Charles Windson Isidoro Haminiuk","doi":"10.17113/ftb.61.04.23.8182","DOIUrl":null,"url":null,"abstract":"Research background. The field of research on bacterial cellulose production has been growing rapidly in recent years, with the potential for its use in various applications, such as in the medical and food industries. Previous studies have focused on optimizing the production process through various methods, such as using different carbon sources and manipulating environmental conditions. However, further research is still needed to optimise the production process and understand the underlying mechanisms of bacterial cellulose synthesis. Experimental approach. We have used Plackett-Burman and Box-Behnken experimental designs to analyse various factors impact on bacterial cellulose production. The optimized medium was analysed for fermentation kinetics, and the cellulose produced was characterised. This approach was used because it allows for the identification of significant factors impacting bacterial cellulose growth, the optimisation of the culture medium, and the characterisation of the produced cellulose. Results and conclusions. The results indicated that higher sucrose concentrations, higher kombucha levels, and lower symbiotic culture of bacteria and yeast size were the most significant factors for improving bacterial cellulose production, while the others had no relevant impact. The optimized medium showed an increase in the concentration of total phenolic compounds and total flavonoids, as well as relevant levels of antioxidant activity. The pure bacterial cellulose produced showed high water absorption capacity, in addition to high crystallinity and thermal stability. Novelty and scientific contribution. The study makes a significant scientific contribution by optimizing the culture medium to produce bacterial cellulose in a more productive and efficient way. The optimized medium can be used for producing a kombucha-type drink containing a high content of bioactive compounds and the production of bacterial cellulose with high crystallinity and thermal stability. Additionally, the study highlights the potential of bacterial cellulose as a highly water-absorbing material with applications in areas such as packaging and biomedical engineering.","PeriodicalId":12400,"journal":{"name":"Food Technology and Biotechnology","volume":"36 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Production Process of Bacterial Nanocellulose: Impact on Growth and Bioactive Compounds\",\"authors\":\"Nicole Folmann Lima, Giselle Maria Maciel, Isabela de Andrade Arruda Fernandes, Charles Windson Isidoro Haminiuk\",\"doi\":\"10.17113/ftb.61.04.23.8182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research background. The field of research on bacterial cellulose production has been growing rapidly in recent years, with the potential for its use in various applications, such as in the medical and food industries. Previous studies have focused on optimizing the production process through various methods, such as using different carbon sources and manipulating environmental conditions. However, further research is still needed to optimise the production process and understand the underlying mechanisms of bacterial cellulose synthesis. Experimental approach. We have used Plackett-Burman and Box-Behnken experimental designs to analyse various factors impact on bacterial cellulose production. The optimized medium was analysed for fermentation kinetics, and the cellulose produced was characterised. This approach was used because it allows for the identification of significant factors impacting bacterial cellulose growth, the optimisation of the culture medium, and the characterisation of the produced cellulose. Results and conclusions. The results indicated that higher sucrose concentrations, higher kombucha levels, and lower symbiotic culture of bacteria and yeast size were the most significant factors for improving bacterial cellulose production, while the others had no relevant impact. The optimized medium showed an increase in the concentration of total phenolic compounds and total flavonoids, as well as relevant levels of antioxidant activity. The pure bacterial cellulose produced showed high water absorption capacity, in addition to high crystallinity and thermal stability. Novelty and scientific contribution. The study makes a significant scientific contribution by optimizing the culture medium to produce bacterial cellulose in a more productive and efficient way. The optimized medium can be used for producing a kombucha-type drink containing a high content of bioactive compounds and the production of bacterial cellulose with high crystallinity and thermal stability. Additionally, the study highlights the potential of bacterial cellulose as a highly water-absorbing material with applications in areas such as packaging and biomedical engineering.\",\"PeriodicalId\":12400,\"journal\":{\"name\":\"Food Technology and Biotechnology\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Technology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17113/ftb.61.04.23.8182\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Technology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17113/ftb.61.04.23.8182","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Optimizing the Production Process of Bacterial Nanocellulose: Impact on Growth and Bioactive Compounds
Research background. The field of research on bacterial cellulose production has been growing rapidly in recent years, with the potential for its use in various applications, such as in the medical and food industries. Previous studies have focused on optimizing the production process through various methods, such as using different carbon sources and manipulating environmental conditions. However, further research is still needed to optimise the production process and understand the underlying mechanisms of bacterial cellulose synthesis. Experimental approach. We have used Plackett-Burman and Box-Behnken experimental designs to analyse various factors impact on bacterial cellulose production. The optimized medium was analysed for fermentation kinetics, and the cellulose produced was characterised. This approach was used because it allows for the identification of significant factors impacting bacterial cellulose growth, the optimisation of the culture medium, and the characterisation of the produced cellulose. Results and conclusions. The results indicated that higher sucrose concentrations, higher kombucha levels, and lower symbiotic culture of bacteria and yeast size were the most significant factors for improving bacterial cellulose production, while the others had no relevant impact. The optimized medium showed an increase in the concentration of total phenolic compounds and total flavonoids, as well as relevant levels of antioxidant activity. The pure bacterial cellulose produced showed high water absorption capacity, in addition to high crystallinity and thermal stability. Novelty and scientific contribution. The study makes a significant scientific contribution by optimizing the culture medium to produce bacterial cellulose in a more productive and efficient way. The optimized medium can be used for producing a kombucha-type drink containing a high content of bioactive compounds and the production of bacterial cellulose with high crystallinity and thermal stability. Additionally, the study highlights the potential of bacterial cellulose as a highly water-absorbing material with applications in areas such as packaging and biomedical engineering.
期刊介绍:
Food Technology and Biotechnology (FTB) is a diamond open access, peer-reviewed international quarterly scientific journal that publishes papers covering a wide range of topics, including molecular biology, genetic engineering, biochemistry, microbiology, biochemical engineering and biotechnological processing, food science, analysis of food ingredients and final products, food processing and technology, oenology and waste treatment.
The Journal is published by the University of Zagreb, Faculty of Food Technology and Biotechnology, Croatia. It is an official journal of Croatian Society of Biotechnology and Slovenian Microbiological Society, financed by the Croatian Ministry of Science and Education, and supported by the Croatian Academy of Sciences and Arts.