{"title":"基于强化学习的公路入口匝道区域卡车队列控制策略研究","authors":"Jiajia Chen, Zheng Zhou, Yue Duan, Biao Yu","doi":"10.3390/wevj14100273","DOIUrl":null,"url":null,"abstract":"With the development of autonomous driving technology, truck platooning control has become a reality. Truck platooning can improve road capacity by maintaining a minor headway. Platooning systems can significantly reduce fuel consumption and emissions, especially for trucks. In this study, we designed a Platoon-MAPPO algorithm to implement truck platooning control based on multi-agent reinforcement learning for a platooning facing an on-ramp scenario on highway. A centralized training, decentralized execution algorithm was used in this paper. Each truck only computes its actions, avoiding the data computation delay problem caused by centralized computation. Each truck considers the truck status in front of and behind itself, maximizing the overall gain of the platooning and improving the global operational efficiency. In terms of performance evaluation, we used the traditional rule-based platooning following model as a benchmark. To ensure fairness, the model used the same network structure and traffic scenario as our proposed model. The simulation results show that the algorithm proposed in this paper has good performance and improves the overall efficiency of the platoon while guaranteeing traffic safety. The average energy consumption decreased by 14.8%, and the road occupancy rate decreased by 43.3%.","PeriodicalId":38979,"journal":{"name":"World Electric Vehicle Journal","volume":"53 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Reinforcement-Learning-Based Truck Platooning Control Strategies in Highway On-Ramp Regions\",\"authors\":\"Jiajia Chen, Zheng Zhou, Yue Duan, Biao Yu\",\"doi\":\"10.3390/wevj14100273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of autonomous driving technology, truck platooning control has become a reality. Truck platooning can improve road capacity by maintaining a minor headway. Platooning systems can significantly reduce fuel consumption and emissions, especially for trucks. In this study, we designed a Platoon-MAPPO algorithm to implement truck platooning control based on multi-agent reinforcement learning for a platooning facing an on-ramp scenario on highway. A centralized training, decentralized execution algorithm was used in this paper. Each truck only computes its actions, avoiding the data computation delay problem caused by centralized computation. Each truck considers the truck status in front of and behind itself, maximizing the overall gain of the platooning and improving the global operational efficiency. In terms of performance evaluation, we used the traditional rule-based platooning following model as a benchmark. To ensure fairness, the model used the same network structure and traffic scenario as our proposed model. The simulation results show that the algorithm proposed in this paper has good performance and improves the overall efficiency of the platoon while guaranteeing traffic safety. The average energy consumption decreased by 14.8%, and the road occupancy rate decreased by 43.3%.\",\"PeriodicalId\":38979,\"journal\":{\"name\":\"World Electric Vehicle Journal\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Electric Vehicle Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/wevj14100273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Electric Vehicle Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/wevj14100273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Research on Reinforcement-Learning-Based Truck Platooning Control Strategies in Highway On-Ramp Regions
With the development of autonomous driving technology, truck platooning control has become a reality. Truck platooning can improve road capacity by maintaining a minor headway. Platooning systems can significantly reduce fuel consumption and emissions, especially for trucks. In this study, we designed a Platoon-MAPPO algorithm to implement truck platooning control based on multi-agent reinforcement learning for a platooning facing an on-ramp scenario on highway. A centralized training, decentralized execution algorithm was used in this paper. Each truck only computes its actions, avoiding the data computation delay problem caused by centralized computation. Each truck considers the truck status in front of and behind itself, maximizing the overall gain of the platooning and improving the global operational efficiency. In terms of performance evaluation, we used the traditional rule-based platooning following model as a benchmark. To ensure fairness, the model used the same network structure and traffic scenario as our proposed model. The simulation results show that the algorithm proposed in this paper has good performance and improves the overall efficiency of the platoon while guaranteeing traffic safety. The average energy consumption decreased by 14.8%, and the road occupancy rate decreased by 43.3%.