基于卫星生成信号的自动紧急呼叫系统建模平台检测方法的实例与误差分析

Yining Fu, Xindong Ni, Jingxuan Yang, Bingjian Wang, Zhe Fang
{"title":"基于卫星生成信号的自动紧急呼叫系统建模平台检测方法的实例与误差分析","authors":"Yining Fu, Xindong Ni, Jingxuan Yang, Bingjian Wang, Zhe Fang","doi":"10.3390/vehicles5040071","DOIUrl":null,"url":null,"abstract":"The positional deviation of the in-vehicle Automatic Emergency Call System (AECS) under collision conditions brings difficulties for Intelligent Connected Vehicles (ICVs) post rescue operations. Currently, there is a lack of analysis on system operating conditions during collisions in the reliability assessment methods for the Global Navigation Satellite System (GNSS) deployed in the AECS. Therefore, this paper establishes an in-vehicle collision environment simulation model for emergency calls to explore the influence of parameters such as temperature and vibration on Signal-Based In-Vehicle Emergency Call Systems. We also propose environmental limits applicable to comprehensive tests, which can objectively evaluate reliability and provide data support for the AECS bench test through a satellite-signal-based semi-physical simulation, which is subjected to a bench test under different operating conditions. The findings of this study demonstrate that the occurrence of random vibration and impact stress, induced by vibration, exerts considerable disruptive effects on positional signal data during collisions. Consequently, it leads to substantial interference with the accurate detection of post-collision satellite positioning information. When the simulation operates under a 2.4 gRMS vibration condition, the maximum phase noise error in the positioning system is 8.95%, which does not meet the test accuracy requirements. On the other hand, the semi-simulation system is less affected by temperature changes, and at the maximum allowable temperature difference of the equipment, the maximum phase noise error in the simulated signal is 2.12%. Therefore, based on the influence of phase noise variation on the accuracy of the satellite signal simulation, necessary environmental conditions for the test are obtained, including a temperature that is consistent with the maximum operating temperature of the vector generator and a vibration power spectral density (PSD) lower than 1.2 gRMS.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Case and Error Analysis on Inspection Methods of Modeling Platforms for Automatic Emergency Call Systems Based on Generated Satellite Signals\",\"authors\":\"Yining Fu, Xindong Ni, Jingxuan Yang, Bingjian Wang, Zhe Fang\",\"doi\":\"10.3390/vehicles5040071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The positional deviation of the in-vehicle Automatic Emergency Call System (AECS) under collision conditions brings difficulties for Intelligent Connected Vehicles (ICVs) post rescue operations. Currently, there is a lack of analysis on system operating conditions during collisions in the reliability assessment methods for the Global Navigation Satellite System (GNSS) deployed in the AECS. Therefore, this paper establishes an in-vehicle collision environment simulation model for emergency calls to explore the influence of parameters such as temperature and vibration on Signal-Based In-Vehicle Emergency Call Systems. We also propose environmental limits applicable to comprehensive tests, which can objectively evaluate reliability and provide data support for the AECS bench test through a satellite-signal-based semi-physical simulation, which is subjected to a bench test under different operating conditions. The findings of this study demonstrate that the occurrence of random vibration and impact stress, induced by vibration, exerts considerable disruptive effects on positional signal data during collisions. Consequently, it leads to substantial interference with the accurate detection of post-collision satellite positioning information. When the simulation operates under a 2.4 gRMS vibration condition, the maximum phase noise error in the positioning system is 8.95%, which does not meet the test accuracy requirements. On the other hand, the semi-simulation system is less affected by temperature changes, and at the maximum allowable temperature difference of the equipment, the maximum phase noise error in the simulated signal is 2.12%. Therefore, based on the influence of phase noise variation on the accuracy of the satellite signal simulation, necessary environmental conditions for the test are obtained, including a temperature that is consistent with the maximum operating temperature of the vector generator and a vibration power spectral density (PSD) lower than 1.2 gRMS.\",\"PeriodicalId\":73282,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/vehicles5040071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5040071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

碰撞条件下车载自动紧急呼叫系统(AECS)的位置偏差给智能网联汽车(icv)的事后救援带来了困难。目前,在AECS部署的全球导航卫星系统(GNSS)可靠性评估方法中,缺乏对碰撞时系统运行状况的分析。为此,本文建立了车载碰撞环境紧急呼叫仿真模型,探讨温度、振动等参数对基于信号的车载紧急呼叫系统的影响。提出了适用于综合试验的环境限值,通过基于卫星信号的半物理模拟,对AECS台架试验进行了不同工况下的台架试验,可以客观地评价可靠性,为AECS台架试验提供数据支持。研究结果表明,振动引起的随机振动和冲击应力的发生对碰撞过程中的位置信号数据产生了相当大的破坏性影响。因此,对碰撞后卫星定位信息的准确检测造成了很大的干扰。当仿真工作在2.4 gRMS振动条件下时,定位系统的最大相位噪声误差为8.95%,不满足测试精度要求。另一方面,半仿真系统受温度变化的影响较小,在设备允许的最大温差下,仿真信号中的最大相位噪声误差为2.12%。因此,基于相位噪声变化对卫星信号仿真精度的影响,获得了试验所需的环境条件,包括与矢量发生器最高工作温度一致的温度,以及低于1.2 gRMS的振动功率谱密度(PSD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Case and Error Analysis on Inspection Methods of Modeling Platforms for Automatic Emergency Call Systems Based on Generated Satellite Signals
The positional deviation of the in-vehicle Automatic Emergency Call System (AECS) under collision conditions brings difficulties for Intelligent Connected Vehicles (ICVs) post rescue operations. Currently, there is a lack of analysis on system operating conditions during collisions in the reliability assessment methods for the Global Navigation Satellite System (GNSS) deployed in the AECS. Therefore, this paper establishes an in-vehicle collision environment simulation model for emergency calls to explore the influence of parameters such as temperature and vibration on Signal-Based In-Vehicle Emergency Call Systems. We also propose environmental limits applicable to comprehensive tests, which can objectively evaluate reliability and provide data support for the AECS bench test through a satellite-signal-based semi-physical simulation, which is subjected to a bench test under different operating conditions. The findings of this study demonstrate that the occurrence of random vibration and impact stress, induced by vibration, exerts considerable disruptive effects on positional signal data during collisions. Consequently, it leads to substantial interference with the accurate detection of post-collision satellite positioning information. When the simulation operates under a 2.4 gRMS vibration condition, the maximum phase noise error in the positioning system is 8.95%, which does not meet the test accuracy requirements. On the other hand, the semi-simulation system is less affected by temperature changes, and at the maximum allowable temperature difference of the equipment, the maximum phase noise error in the simulated signal is 2.12%. Therefore, based on the influence of phase noise variation on the accuracy of the satellite signal simulation, necessary environmental conditions for the test are obtained, including a temperature that is consistent with the maximum operating temperature of the vector generator and a vibration power spectral density (PSD) lower than 1.2 gRMS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信