遥感地表水范围数据对集总水文模型定标的价值评价

IF 4.6 1区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Aline Meyer Oliveira, H. J. (Ilja) van Meerveld, Marc Vis, Jan Seibert
{"title":"遥感地表水范围数据对集总水文模型定标的价值评价","authors":"Aline Meyer Oliveira, H. J. (Ilja) van Meerveld, Marc Vis, Jan Seibert","doi":"10.1029/2023wr034875","DOIUrl":null,"url":null,"abstract":"Abstract For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"29 4","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of the Value of Remotely Sensed Surface Water Extent Data for the Calibration of a Lumped Hydrological Model\",\"authors\":\"Aline Meyer Oliveira, H. J. (Ilja) van Meerveld, Marc Vis, Jan Seibert\",\"doi\":\"10.1029/2023wr034875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"29 4\",\"pages\":\"0\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr034875\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023wr034875","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对于许多集水区,没有足够的实地数据来校准回答水资源管理问题所需的水文模型。克服这种数据缺乏的一种方法是使用遥感数据。在本研究中,我们评估了基于Landsat的地表水范围观测是否可以为巴西集水区集总桶型模型的校准提供信息。我们首先用每日、每月和有限的每月数据(4 - 10月)进行了综合实验,假设河流流量和河流宽度之间存在完美的单调关系。每日数据的中位数相对性能为0.35,月度数据的中位数相对性能为0.17,其中值大于0意味着与较低基准相比,模型性能有所改善。这表明遥感数据的时间分辨率有限并不妨碍模式定标。第二步,利用遥感实测水位数据进行标定。在671个站点中,只有76个站点的遥感水位较大且变化较大,足以用于模式校准。对于其中30%的站点,使用实际遥感水域范围数据进行校准,导致模型拟合优于较低基准(即相对性能>0)。模型性能随河流宽度及其变化而增大。这表明,本研究中使用的可自由获取的长时间水范围序列的粗空间分辨率阻碍了模型校准。因此,我们期望更新的高分辨率图像将有助于更多站点的模型校准,特别是当时间序列长度增加时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of the Value of Remotely Sensed Surface Water Extent Data for the Calibration of a Lumped Hydrological Model
Abstract For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Resources Research
Water Resources Research 环境科学-湖沼学
CiteScore
8.80
自引率
13.00%
发文量
599
审稿时长
3.5 months
期刊介绍: Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信