可见光辅助碱催化,一锅合成高功能化肉桂碱

IF 3.8 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ahmed Elkamhawy, Laila Jaragh-Alhadad, Ramadan Ahmed Mekheimer, Omeima Abdullah, Mohamed Abd-Elmonem, Moustafa Sherief Moustafa, Afaf Abdel-Hameed, Tahany Mahmoud Mohamed, Kamal Usef Sadek
{"title":"可见光辅助碱催化,一锅合成高功能化肉桂碱","authors":"Ahmed Elkamhawy, Laila Jaragh-Alhadad, Ramadan Ahmed Mekheimer, Omeima Abdullah, Mohamed Abd-Elmonem, Moustafa Sherief Moustafa, Afaf Abdel-Hameed, Tahany Mahmoud Mohamed, Kamal Usef Sadek","doi":"10.1515/gps-2023-0121","DOIUrl":null,"url":null,"abstract":"Abstract The synthesis of cinnolines has found great interest due to their diverse biological and industrial potency. Yet, the reported synthetic protocols for their synthesis showed limitations that involve harsh reaction conditions such as strong acidic or basic medium, low reaction yields, and using expensive and high loading catalysts. The C–H functionalization has been recognized as intriguing synthetic approach for the synthesis of aromatic/heteroaromatic scaffolds over the past two decades. Here, we reported a novel metal-catalyzed free photocatalytic synthesis of polyfunctionally substituted cinnolines. When ethyl 1-aryl-5-cyano-4-methyl-6-oxo-1,6-dihydropyridazine-3-carboxylates and nitrostyrene derivatives are irradiated with white light (LED 30 W) in ethanol in the presence of piperidine (30 mol%) in open air for 8 h at room temperature, the corresponding polyfunctionally substituted cinnolines are obtained in excellent yields (90–95%) via C–H activation of pyridazine methyl group and nitrostyrene (–N═O) function. Several merits were achieved, which are as follows: (1) the reaction is metal-free; (2) the reaction proceeds with increasing energy efficiency; (3) diversity of functionally substituted cinnolines; (4) high EcoScale value, which reflects the greens of the reaction; and (5) ease handling either in conducting the reaction or in the isolation of products.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":"2016 1","pages":"0"},"PeriodicalIF":3.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visible-light-assisted base-catalyzed, one-pot synthesis of highly functionalized cinnolines\",\"authors\":\"Ahmed Elkamhawy, Laila Jaragh-Alhadad, Ramadan Ahmed Mekheimer, Omeima Abdullah, Mohamed Abd-Elmonem, Moustafa Sherief Moustafa, Afaf Abdel-Hameed, Tahany Mahmoud Mohamed, Kamal Usef Sadek\",\"doi\":\"10.1515/gps-2023-0121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The synthesis of cinnolines has found great interest due to their diverse biological and industrial potency. Yet, the reported synthetic protocols for their synthesis showed limitations that involve harsh reaction conditions such as strong acidic or basic medium, low reaction yields, and using expensive and high loading catalysts. The C–H functionalization has been recognized as intriguing synthetic approach for the synthesis of aromatic/heteroaromatic scaffolds over the past two decades. Here, we reported a novel metal-catalyzed free photocatalytic synthesis of polyfunctionally substituted cinnolines. When ethyl 1-aryl-5-cyano-4-methyl-6-oxo-1,6-dihydropyridazine-3-carboxylates and nitrostyrene derivatives are irradiated with white light (LED 30 W) in ethanol in the presence of piperidine (30 mol%) in open air for 8 h at room temperature, the corresponding polyfunctionally substituted cinnolines are obtained in excellent yields (90–95%) via C–H activation of pyridazine methyl group and nitrostyrene (–N═O) function. Several merits were achieved, which are as follows: (1) the reaction is metal-free; (2) the reaction proceeds with increasing energy efficiency; (3) diversity of functionally substituted cinnolines; (4) high EcoScale value, which reflects the greens of the reaction; and (5) ease handling either in conducting the reaction or in the isolation of products.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":\"2016 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2023-0121\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gps-2023-0121","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要肉桂碱的合成由于其多种多样的生物和工业潜力而引起了人们的极大兴趣。然而,目前报道的合成方案显示出其局限性,包括恶劣的反应条件,如强酸性或碱性介质,低反应产率,以及使用昂贵和高负载的催化剂。在过去的二十年中,碳氢功能化被认为是合成芳香/杂芳香支架的一种有趣的合成方法。在这里,我们报道了一种新的金属催化的自由光催化合成多功能取代肉桂碱。当1-芳基-5-氰基-4-甲基-6-氧-1,6-二氢吡啶-3-羧酸乙酯和硝基苯乙烯衍生物在室温下,在哌啶(30 mol%)存在下,用白光(LED 30 W)在乙醇中照射8 h时,通过吡啶甲基和硝基苯乙烯(-N = O)官能团的C-H活化,得到了相应的多功能取代喹啉,收率高(90-95%)。取得了以下几个优点:(1)反应不含金属;(2)反应的能量效率越来越高;(3)功能取代肉桂碱的多样性;(4) EcoScale值高,反映反应的绿色;(5)在进行反应或分离产物时易于操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visible-light-assisted base-catalyzed, one-pot synthesis of highly functionalized cinnolines
Abstract The synthesis of cinnolines has found great interest due to their diverse biological and industrial potency. Yet, the reported synthetic protocols for their synthesis showed limitations that involve harsh reaction conditions such as strong acidic or basic medium, low reaction yields, and using expensive and high loading catalysts. The C–H functionalization has been recognized as intriguing synthetic approach for the synthesis of aromatic/heteroaromatic scaffolds over the past two decades. Here, we reported a novel metal-catalyzed free photocatalytic synthesis of polyfunctionally substituted cinnolines. When ethyl 1-aryl-5-cyano-4-methyl-6-oxo-1,6-dihydropyridazine-3-carboxylates and nitrostyrene derivatives are irradiated with white light (LED 30 W) in ethanol in the presence of piperidine (30 mol%) in open air for 8 h at room temperature, the corresponding polyfunctionally substituted cinnolines are obtained in excellent yields (90–95%) via C–H activation of pyridazine methyl group and nitrostyrene (–N═O) function. Several merits were achieved, which are as follows: (1) the reaction is metal-free; (2) the reaction proceeds with increasing energy efficiency; (3) diversity of functionally substituted cinnolines; (4) high EcoScale value, which reflects the greens of the reaction; and (5) ease handling either in conducting the reaction or in the isolation of products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Processing and Synthesis
Green Processing and Synthesis CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
6.70
自引率
9.30%
发文量
78
审稿时长
7 weeks
期刊介绍: Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信