Chengquan Yan, Bin Meng, Pengfei Wang, Chaofei Zhao, Guangwei Yin, Xin Meng, Lin Li, Shengyong Cai
{"title":"长链非编码RNA LINC00565通过海绵化MicroRNA-532-3p调控ADAM19的表达,从而促进透明细胞肾细胞癌的进展","authors":"Chengquan Yan, Bin Meng, Pengfei Wang, Chaofei Zhao, Guangwei Yin, Xin Meng, Lin Li, Shengyong Cai","doi":"10.4103/cjop.cjop-d-23-00078","DOIUrl":null,"url":null,"abstract":"Proven by publications, long non-coding RNAs (lncRNAs) play critical roles in the development of clear cell renal cell carcinoma (ccRCC). Although lncRNA LINC00565 has been implicated in the progression of various cancers, its biological effects on ccRCC remain unknown. This study aimed to investigate the biological functions of LINC00565, as well as its potential mechanism in ccRCC. Here, the expression data of mature microRNAs (miRNAs) (normal: 71, tumor: 545), messenger RNAs (mRNAs), and lncRNAs (normal: 72, tumor: 539) of ccRCC were acquired from The Cancer Genome Atlas (TCGA) database and subjected to differential expression analysis. Quantitative reverse transcriptase polymerase chain reaction analyzed the expression levels of LINC00565, miR-532-3p, and ADAM19 mRNA. TCGA database, dual-luciferase report detection, and Argonaute 2 RNA immunoprecipitation were utilized to confirm the relationships between LINC00565 and miR-532-3p and between miR-532-3p and ADAM19, respectively. The progression of ccRCC cells was determined via CCK-8, colony formation, scratch healing, and transwell assays. Western blot was applied to detect the protein levels of epithelial-mesenchymal transition markers and ADAM19. We herein suggested that LINC00565 was prominently upregulated in ccRCC tissues and cells. Knockdown of LINC00565 repressed cell progression. We further predicted and validated miR-532-3p as a target of LINC00565, and miR-532-3p could target ADAM19. Knockdown of LINC00565 resulted in ADAM19 level downregulation in ccRCC cells and suppressed miR-532-3p could restore ADAM19 level. Thus, the three RNAs constructed a ceRNA network. Overexpressed ADAM19 could eliminate the anticancer effects caused by knocking down LINC00565 on ccRCC cells. In conclusion, LINC00565 upregulated ADAM19 via absorbing miR-532-3p, thereby facilitating the progression of ccRCC cells.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long non-coding RNA LINC00565 regulates ADAM19 expression through sponging MicroRNA-532-3p, thereby facilitating clear cell renal cell carcinoma progression\",\"authors\":\"Chengquan Yan, Bin Meng, Pengfei Wang, Chaofei Zhao, Guangwei Yin, Xin Meng, Lin Li, Shengyong Cai\",\"doi\":\"10.4103/cjop.cjop-d-23-00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proven by publications, long non-coding RNAs (lncRNAs) play critical roles in the development of clear cell renal cell carcinoma (ccRCC). Although lncRNA LINC00565 has been implicated in the progression of various cancers, its biological effects on ccRCC remain unknown. This study aimed to investigate the biological functions of LINC00565, as well as its potential mechanism in ccRCC. Here, the expression data of mature microRNAs (miRNAs) (normal: 71, tumor: 545), messenger RNAs (mRNAs), and lncRNAs (normal: 72, tumor: 539) of ccRCC were acquired from The Cancer Genome Atlas (TCGA) database and subjected to differential expression analysis. Quantitative reverse transcriptase polymerase chain reaction analyzed the expression levels of LINC00565, miR-532-3p, and ADAM19 mRNA. TCGA database, dual-luciferase report detection, and Argonaute 2 RNA immunoprecipitation were utilized to confirm the relationships between LINC00565 and miR-532-3p and between miR-532-3p and ADAM19, respectively. The progression of ccRCC cells was determined via CCK-8, colony formation, scratch healing, and transwell assays. Western blot was applied to detect the protein levels of epithelial-mesenchymal transition markers and ADAM19. We herein suggested that LINC00565 was prominently upregulated in ccRCC tissues and cells. Knockdown of LINC00565 repressed cell progression. We further predicted and validated miR-532-3p as a target of LINC00565, and miR-532-3p could target ADAM19. Knockdown of LINC00565 resulted in ADAM19 level downregulation in ccRCC cells and suppressed miR-532-3p could restore ADAM19 level. Thus, the three RNAs constructed a ceRNA network. Overexpressed ADAM19 could eliminate the anticancer effects caused by knocking down LINC00565 on ccRCC cells. In conclusion, LINC00565 upregulated ADAM19 via absorbing miR-532-3p, thereby facilitating the progression of ccRCC cells.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/cjop.cjop-d-23-00078\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/cjop.cjop-d-23-00078","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Long non-coding RNA LINC00565 regulates ADAM19 expression through sponging MicroRNA-532-3p, thereby facilitating clear cell renal cell carcinoma progression
Proven by publications, long non-coding RNAs (lncRNAs) play critical roles in the development of clear cell renal cell carcinoma (ccRCC). Although lncRNA LINC00565 has been implicated in the progression of various cancers, its biological effects on ccRCC remain unknown. This study aimed to investigate the biological functions of LINC00565, as well as its potential mechanism in ccRCC. Here, the expression data of mature microRNAs (miRNAs) (normal: 71, tumor: 545), messenger RNAs (mRNAs), and lncRNAs (normal: 72, tumor: 539) of ccRCC were acquired from The Cancer Genome Atlas (TCGA) database and subjected to differential expression analysis. Quantitative reverse transcriptase polymerase chain reaction analyzed the expression levels of LINC00565, miR-532-3p, and ADAM19 mRNA. TCGA database, dual-luciferase report detection, and Argonaute 2 RNA immunoprecipitation were utilized to confirm the relationships between LINC00565 and miR-532-3p and between miR-532-3p and ADAM19, respectively. The progression of ccRCC cells was determined via CCK-8, colony formation, scratch healing, and transwell assays. Western blot was applied to detect the protein levels of epithelial-mesenchymal transition markers and ADAM19. We herein suggested that LINC00565 was prominently upregulated in ccRCC tissues and cells. Knockdown of LINC00565 repressed cell progression. We further predicted and validated miR-532-3p as a target of LINC00565, and miR-532-3p could target ADAM19. Knockdown of LINC00565 resulted in ADAM19 level downregulation in ccRCC cells and suppressed miR-532-3p could restore ADAM19 level. Thus, the three RNAs constructed a ceRNA network. Overexpressed ADAM19 could eliminate the anticancer effects caused by knocking down LINC00565 on ccRCC cells. In conclusion, LINC00565 upregulated ADAM19 via absorbing miR-532-3p, thereby facilitating the progression of ccRCC cells.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.