石墨坩埚与Fe-Si-B相变材料相互作用的中试实验

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianmeng Jiao, Sethulakshmy Jayakumari, Maria Wallin, Merete Tangstad
{"title":"石墨坩埚与Fe-Si-B相变材料相互作用的中试实验","authors":"Jianmeng Jiao, Sethulakshmy Jayakumari, Maria Wallin, Merete Tangstad","doi":"10.1515/htmp-2022-0288","DOIUrl":null,"url":null,"abstract":"Abstract Fe–26Si–9B alloy is a promising high temperature phase change material (HTPCM), due to its high heat of fusion, small volumetric change, abundance, and low cost. Additionally, graphite has been identified as a promising candidate for use as a container material for this alloy. In this study, the feasibility of using graphite for Fe–26Si–9B HTPCM is investigated in a pilot-scale. Specifically, 4–5 kg Fe–26Si–9B master alloys were melted in graphite crucibles using an induction furnace, which underwent 2–3 thermal cycles in the temperature range of 1,100–1,375°C. The results showed that SiC and B 4 C precipitates were formed in the alloys. However, these carbides were found to be present only on the surface of the solidified alloys and not in the main body. Still, the chemical composition of the Fe–26Si–9B alloy remained relatively stable during the thermal cycles. It was also seen that the graphite crucible withstood the temperature cycles without cracking. Therefore, the use of graphite as a container for Fe–26Si–9B phase change material is a promising approach.","PeriodicalId":12966,"journal":{"name":"High Temperature Materials and Processes","volume":"50 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphite crucible interaction with Fe–Si–B phase change material in pilot-scale experiments\",\"authors\":\"Jianmeng Jiao, Sethulakshmy Jayakumari, Maria Wallin, Merete Tangstad\",\"doi\":\"10.1515/htmp-2022-0288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fe–26Si–9B alloy is a promising high temperature phase change material (HTPCM), due to its high heat of fusion, small volumetric change, abundance, and low cost. Additionally, graphite has been identified as a promising candidate for use as a container material for this alloy. In this study, the feasibility of using graphite for Fe–26Si–9B HTPCM is investigated in a pilot-scale. Specifically, 4–5 kg Fe–26Si–9B master alloys were melted in graphite crucibles using an induction furnace, which underwent 2–3 thermal cycles in the temperature range of 1,100–1,375°C. The results showed that SiC and B 4 C precipitates were formed in the alloys. However, these carbides were found to be present only on the surface of the solidified alloys and not in the main body. Still, the chemical composition of the Fe–26Si–9B alloy remained relatively stable during the thermal cycles. It was also seen that the graphite crucible withstood the temperature cycles without cracking. Therefore, the use of graphite as a container for Fe–26Si–9B phase change material is a promising approach.\",\"PeriodicalId\":12966,\"journal\":{\"name\":\"High Temperature Materials and Processes\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature Materials and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/htmp-2022-0288\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature Materials and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htmp-2022-0288","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要Fe-26Si-9B合金具有熔合热高、体积变化小、丰度高、成本低等优点,是一种很有前途的高温相变材料。此外,石墨已被确定为该合金的容器材料的有前途的候选者。在本研究中,在中试规模上研究了石墨用于Fe-26Si-9B HTPCM的可行性。具体来说,4-5 kg的Fe-26Si-9B母合金在感应炉的石墨坩埚中熔化,在1100 - 1375°C的温度范围内进行了2-3次热循环。结果表明:合金中有SiC和b4c析出;然而,这些碳化物只存在于凝固合金的表面,而不存在于主体中。然而,Fe-26Si-9B合金的化学成分在热循环过程中保持相对稳定。实验还发现,石墨坩埚经受住了温度循环而没有开裂。因此,使用石墨作为Fe-26Si-9B相变材料的容器是一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphite crucible interaction with Fe–Si–B phase change material in pilot-scale experiments
Abstract Fe–26Si–9B alloy is a promising high temperature phase change material (HTPCM), due to its high heat of fusion, small volumetric change, abundance, and low cost. Additionally, graphite has been identified as a promising candidate for use as a container material for this alloy. In this study, the feasibility of using graphite for Fe–26Si–9B HTPCM is investigated in a pilot-scale. Specifically, 4–5 kg Fe–26Si–9B master alloys were melted in graphite crucibles using an induction furnace, which underwent 2–3 thermal cycles in the temperature range of 1,100–1,375°C. The results showed that SiC and B 4 C precipitates were formed in the alloys. However, these carbides were found to be present only on the surface of the solidified alloys and not in the main body. Still, the chemical composition of the Fe–26Si–9B alloy remained relatively stable during the thermal cycles. It was also seen that the graphite crucible withstood the temperature cycles without cracking. Therefore, the use of graphite as a container for Fe–26Si–9B phase change material is a promising approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature Materials and Processes
High Temperature Materials and Processes 工程技术-材料科学:综合
CiteScore
2.50
自引率
0.00%
发文量
42
审稿时长
3.9 months
期刊介绍: High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures. Occasionally, reviews of a specific topic are included. The journal also publishes special issues featuring ongoing research programs as well as symposia of high-temperature materials and processes, and other related research activities. Emphasis is placed on the multi-disciplinary nature of high-temperature materials and processes for various materials in a variety of states. Such a nature of the journal will help readers who wish to become acquainted with related subjects by obtaining information of various aspects of high-temperature materials research. The increasing spread of information on these subjects will also help to shed light on relevant topics of high-temperature materials and processes outside of readers’ own core specialties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信