Fasih Ahmad Rahman, Troy Campbell, Darin Bloemberg, Sarah Chapman, Joe Quadrilatero
{"title":"心脏毒素损伤后atg7缺陷骨骼肌中的降解信号","authors":"Fasih Ahmad Rahman, Troy Campbell, Darin Bloemberg, Sarah Chapman, Joe Quadrilatero","doi":"10.3390/muscles2030023","DOIUrl":null,"url":null,"abstract":"Skeletal muscle is a complex tissue comprising multinucleated and post-mitotic cells (i.e., myofibers). Given this, skeletal muscle must maintain a fine balance between growth and degradative signals. A major system regulating the remodeling of skeletal muscle is autophagy, where cellular quality control is mediated by the degradation of damaged cellular components. The accumulation of damaged cellular material can result in elevated apoptotic signaling, which is particularly relevant in skeletal muscle given its post-mitotic nature. Luckily, skeletal muscle possesses the unique ability to regenerate in response to injury. It is unknown whether a relationship between autophagy and apoptotic signaling exists in injured skeletal muscle and how autophagy deficiency influences myofiber apoptosis and regeneration. In the present study, we demonstrate that an initial inducible muscle-specific autophagy deficiency does not alter apoptotic signaling following cardiotoxin injury. This finding is presumably due to the re-establishment of ATG7 levels following injury, which may be attributed to the contribution of a functional Atg7 gene from satellite cells. Furthermore, the re-expression of ATG7 resulted in virtually identical regenerative potential. Overall, our data demonstrate that catastrophic injury may “reset” muscle gene expression via the incorporation of nuclei from satellite cells.","PeriodicalId":46318,"journal":{"name":"MLTJ-Muscles Ligaments and Tendons Journal","volume":"63 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradative Signaling in ATG7-Deficient Skeletal Muscle Following Cardiotoxin Injury\",\"authors\":\"Fasih Ahmad Rahman, Troy Campbell, Darin Bloemberg, Sarah Chapman, Joe Quadrilatero\",\"doi\":\"10.3390/muscles2030023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skeletal muscle is a complex tissue comprising multinucleated and post-mitotic cells (i.e., myofibers). Given this, skeletal muscle must maintain a fine balance between growth and degradative signals. A major system regulating the remodeling of skeletal muscle is autophagy, where cellular quality control is mediated by the degradation of damaged cellular components. The accumulation of damaged cellular material can result in elevated apoptotic signaling, which is particularly relevant in skeletal muscle given its post-mitotic nature. Luckily, skeletal muscle possesses the unique ability to regenerate in response to injury. It is unknown whether a relationship between autophagy and apoptotic signaling exists in injured skeletal muscle and how autophagy deficiency influences myofiber apoptosis and regeneration. In the present study, we demonstrate that an initial inducible muscle-specific autophagy deficiency does not alter apoptotic signaling following cardiotoxin injury. This finding is presumably due to the re-establishment of ATG7 levels following injury, which may be attributed to the contribution of a functional Atg7 gene from satellite cells. Furthermore, the re-expression of ATG7 resulted in virtually identical regenerative potential. Overall, our data demonstrate that catastrophic injury may “reset” muscle gene expression via the incorporation of nuclei from satellite cells.\",\"PeriodicalId\":46318,\"journal\":{\"name\":\"MLTJ-Muscles Ligaments and Tendons Journal\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MLTJ-Muscles Ligaments and Tendons Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/muscles2030023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MLTJ-Muscles Ligaments and Tendons Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/muscles2030023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
Degradative Signaling in ATG7-Deficient Skeletal Muscle Following Cardiotoxin Injury
Skeletal muscle is a complex tissue comprising multinucleated and post-mitotic cells (i.e., myofibers). Given this, skeletal muscle must maintain a fine balance between growth and degradative signals. A major system regulating the remodeling of skeletal muscle is autophagy, where cellular quality control is mediated by the degradation of damaged cellular components. The accumulation of damaged cellular material can result in elevated apoptotic signaling, which is particularly relevant in skeletal muscle given its post-mitotic nature. Luckily, skeletal muscle possesses the unique ability to regenerate in response to injury. It is unknown whether a relationship between autophagy and apoptotic signaling exists in injured skeletal muscle and how autophagy deficiency influences myofiber apoptosis and regeneration. In the present study, we demonstrate that an initial inducible muscle-specific autophagy deficiency does not alter apoptotic signaling following cardiotoxin injury. This finding is presumably due to the re-establishment of ATG7 levels following injury, which may be attributed to the contribution of a functional Atg7 gene from satellite cells. Furthermore, the re-expression of ATG7 resulted in virtually identical regenerative potential. Overall, our data demonstrate that catastrophic injury may “reset” muscle gene expression via the incorporation of nuclei from satellite cells.
期刊介绍:
MLTJ (Muscle, Ligaments and Tendons Journal) is an open access, peer-reviewed online journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal, ligament, tendon, public health, exercise physiology and kinesiology issues. Muscle, Ligaments and Tendons Journal (MLTJ) provides the platform for exchange of new clinical and scientific information in the most precise and expeditious way to achieve timely dissemination of information and cross-fertilization of ideas. It is the official journal of the Italian Society of Muscles, Ligaments and Tendons (I.S.Mu.L.T.), Società Italiana Terapia con Onde D’urto (S.I.T.O.D.) and Società Italiana Studio Piede e Caviglia (S.I.S.P.E.C)