{"title":"无核边缘传递的巢图","authors":"István Kovács","doi":"10.26493/1855-3974.2944.9cd","DOIUrl":null,"url":null,"abstract":"A finite simple graph Γ is called a Nest graph if it is regular of valency 6 and admits an automorphism ρ with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. We say that Γ is core-free if no non-trivial subgroup of the group generated by ρ is normal in Aut(Γ). In this paper, we show that, if Γ is edge-transitive and core-free, then it is isomorphic to one of the following graphs: the complement of the Petersen graph, the Hamming graph H(2,4), the Shrikhande graph and a certain normal 2-cover of K3, 3 by ℤ24.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":"54 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge-transitive core-free Nest graphs\",\"authors\":\"István Kovács\",\"doi\":\"10.26493/1855-3974.2944.9cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite simple graph Γ is called a Nest graph if it is regular of valency 6 and admits an automorphism ρ with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. We say that Γ is core-free if no non-trivial subgroup of the group generated by ρ is normal in Aut(Γ). In this paper, we show that, if Γ is edge-transitive and core-free, then it is isomorphic to one of the following graphs: the complement of the Petersen graph, the Hamming graph H(2,4), the Shrikhande graph and a certain normal 2-cover of K3, 3 by ℤ24.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2944.9cd\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2944.9cd","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A finite simple graph Γ is called a Nest graph if it is regular of valency 6 and admits an automorphism ρ with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. We say that Γ is core-free if no non-trivial subgroup of the group generated by ρ is normal in Aut(Γ). In this paper, we show that, if Γ is edge-transitive and core-free, then it is isomorphic to one of the following graphs: the complement of the Petersen graph, the Hamming graph H(2,4), the Shrikhande graph and a certain normal 2-cover of K3, 3 by ℤ24.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.