无核边缘传递的巢图

Pub Date : 2023-09-15 DOI:10.26493/1855-3974.2944.9cd
István Kovács
{"title":"无核边缘传递的巢图","authors":"István Kovács","doi":"10.26493/1855-3974.2944.9cd","DOIUrl":null,"url":null,"abstract":"A finite simple graph Γ is called a Nest graph if it is regular of valency 6 and admits an automorphism ρ with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. We say that Γ is core-free if no non-trivial subgroup of the group generated by ρ is normal in Aut(Γ). In this paper, we show that, if Γ is edge-transitive and core-free, then it is isomorphic to one of the following graphs: the complement of the Petersen graph, the Hamming graph H(2,4), the Shrikhande graph and a certain normal 2-cover of K3, 3 by ℤ24.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge-transitive core-free Nest graphs\",\"authors\":\"István Kovács\",\"doi\":\"10.26493/1855-3974.2944.9cd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A finite simple graph Γ is called a Nest graph if it is regular of valency 6 and admits an automorphism ρ with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. We say that Γ is core-free if no non-trivial subgroup of the group generated by ρ is normal in Aut(Γ). In this paper, we show that, if Γ is edge-transitive and core-free, then it is isomorphic to one of the following graphs: the complement of the Petersen graph, the Hamming graph H(2,4), the Shrikhande graph and a certain normal 2-cover of K3, 3 by ℤ24.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2944.9cd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2944.9cd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一个有限简单图Γ如果它是价为6的正则图,并且允许两个相同长度的轨道的自同构ρ,使得由这些轨道引起的子图中至少有一个是循环,则称为巢图。如果在Aut(Γ)中由ρ生成的群中没有非平凡子群是正常的,我们说Γ是无核的。本文证明,如果Γ是边传递且无核的,则它同构于下列图之一:Petersen图、Hamming图H(2,4)、Shrikhande图的补和k3,3的某法线2-覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Edge-transitive core-free Nest graphs
A finite simple graph Γ is called a Nest graph if it is regular of valency 6 and admits an automorphism ρ with two orbits of the same length such that at least one of the subgraphs induced by these orbits is a cycle. We say that Γ is core-free if no non-trivial subgroup of the group generated by ρ is normal in Aut(Γ). In this paper, we show that, if Γ is edge-transitive and core-free, then it is isomorphic to one of the following graphs: the complement of the Petersen graph, the Hamming graph H(2,4), the Shrikhande graph and a certain normal 2-cover of K3, 3 by ℤ24.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信