José M. Moreno, Eva Zuazua, Iván Torres, Antonio Parra, Clara Moreno-Fenoll
{"title":"西班牙中部四种灌木种子传播的时空格局","authors":"José M. Moreno, Eva Zuazua, Iván Torres, Antonio Parra, Clara Moreno-Fenoll","doi":"10.1186/s42408-023-00213-3","DOIUrl":null,"url":null,"abstract":"Abstract Background Mediterranean shrublands are composed of species that have different regeneration strategies after fire and soil seed bank types. However, differences over the years in seed dispersal temporal and spatial patterns of the various plants composing a community have been little investigated. Here, we studied the temporal and spatial patterns of seed dispersal in four shrubs of an old (> 40 years) shrubland in central Spain. Three of them are seeders ( Cistus ladanifer , Erica umbellata , and Salvia rosmarinus ), and one is a resprouter ( Erica arborea ); the first two have persistent soil seed banks, and the latter two, transient. A 15 × 10 m plot was chosen and divided into a 0.5 × 0.5 m grid, where plant cover and density were measured. At 106 quadrats, seed traps were set and periodically (1–2 monthly) monitored for 3 years. Results S. rosmarinus dispersed in late spring-early summer, E. arborea dispersed during the summer, and C. ladanifer and E. umbellata dispersed from early summer to nearly late spring of the next year. Globally, seeds were being dispersed all year round. The seed crop size of a given species varied between years, although species differed in the year their seed crop was largest, despite large differences in climate. Seed rain and plant cover of each species were poorly related in terms of the variance explained by the models. Semivariogram analysis showed that seed dispersal expanded beyond that of the plant cover of each species by a few meters. No association between seed crop size and spatial dependence was ascertained. While species dispersal in space tended to be negatively related to one another, E. arborea seeds tended to dominate underneath the majority of the other species. Conclusions S. rosmarinus dispersed before the fire season, which is consistent with seeds avoiding fire while on the plant; C. ladanifer and E. umbellata dispersed mostly after the fire season, which is coherent with a bet-hedging strategy against seed predators; E. arborea dispersed before the rainy season, which is expected for a plant that germinates readily after imbibition. Seed dispersal in time was compatible with the type of soil seed bank and post-fire regeneration of the species. The evidence of such a relationship with spatial patterns was weak. The dominance of E. arborea seeds underneath most of the other species suggests that this mid-successional species might dominate when openings form due to the deaths of standing plants of the seeders between two fires, given their lower longevity.","PeriodicalId":12273,"journal":{"name":"Fire Ecology","volume":"33 1","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal and spatial patterns of seed dispersal of four shrubs in a Cistus-Erica shrubland from central Spain\",\"authors\":\"José M. Moreno, Eva Zuazua, Iván Torres, Antonio Parra, Clara Moreno-Fenoll\",\"doi\":\"10.1186/s42408-023-00213-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Mediterranean shrublands are composed of species that have different regeneration strategies after fire and soil seed bank types. However, differences over the years in seed dispersal temporal and spatial patterns of the various plants composing a community have been little investigated. Here, we studied the temporal and spatial patterns of seed dispersal in four shrubs of an old (> 40 years) shrubland in central Spain. Three of them are seeders ( Cistus ladanifer , Erica umbellata , and Salvia rosmarinus ), and one is a resprouter ( Erica arborea ); the first two have persistent soil seed banks, and the latter two, transient. A 15 × 10 m plot was chosen and divided into a 0.5 × 0.5 m grid, where plant cover and density were measured. At 106 quadrats, seed traps were set and periodically (1–2 monthly) monitored for 3 years. Results S. rosmarinus dispersed in late spring-early summer, E. arborea dispersed during the summer, and C. ladanifer and E. umbellata dispersed from early summer to nearly late spring of the next year. Globally, seeds were being dispersed all year round. The seed crop size of a given species varied between years, although species differed in the year their seed crop was largest, despite large differences in climate. Seed rain and plant cover of each species were poorly related in terms of the variance explained by the models. Semivariogram analysis showed that seed dispersal expanded beyond that of the plant cover of each species by a few meters. No association between seed crop size and spatial dependence was ascertained. While species dispersal in space tended to be negatively related to one another, E. arborea seeds tended to dominate underneath the majority of the other species. Conclusions S. rosmarinus dispersed before the fire season, which is consistent with seeds avoiding fire while on the plant; C. ladanifer and E. umbellata dispersed mostly after the fire season, which is coherent with a bet-hedging strategy against seed predators; E. arborea dispersed before the rainy season, which is expected for a plant that germinates readily after imbibition. Seed dispersal in time was compatible with the type of soil seed bank and post-fire regeneration of the species. The evidence of such a relationship with spatial patterns was weak. The dominance of E. arborea seeds underneath most of the other species suggests that this mid-successional species might dominate when openings form due to the deaths of standing plants of the seeders between two fires, given their lower longevity.\",\"PeriodicalId\":12273,\"journal\":{\"name\":\"Fire Ecology\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s42408-023-00213-3\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42408-023-00213-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Temporal and spatial patterns of seed dispersal of four shrubs in a Cistus-Erica shrubland from central Spain
Abstract Background Mediterranean shrublands are composed of species that have different regeneration strategies after fire and soil seed bank types. However, differences over the years in seed dispersal temporal and spatial patterns of the various plants composing a community have been little investigated. Here, we studied the temporal and spatial patterns of seed dispersal in four shrubs of an old (> 40 years) shrubland in central Spain. Three of them are seeders ( Cistus ladanifer , Erica umbellata , and Salvia rosmarinus ), and one is a resprouter ( Erica arborea ); the first two have persistent soil seed banks, and the latter two, transient. A 15 × 10 m plot was chosen and divided into a 0.5 × 0.5 m grid, where plant cover and density were measured. At 106 quadrats, seed traps were set and periodically (1–2 monthly) monitored for 3 years. Results S. rosmarinus dispersed in late spring-early summer, E. arborea dispersed during the summer, and C. ladanifer and E. umbellata dispersed from early summer to nearly late spring of the next year. Globally, seeds were being dispersed all year round. The seed crop size of a given species varied between years, although species differed in the year their seed crop was largest, despite large differences in climate. Seed rain and plant cover of each species were poorly related in terms of the variance explained by the models. Semivariogram analysis showed that seed dispersal expanded beyond that of the plant cover of each species by a few meters. No association between seed crop size and spatial dependence was ascertained. While species dispersal in space tended to be negatively related to one another, E. arborea seeds tended to dominate underneath the majority of the other species. Conclusions S. rosmarinus dispersed before the fire season, which is consistent with seeds avoiding fire while on the plant; C. ladanifer and E. umbellata dispersed mostly after the fire season, which is coherent with a bet-hedging strategy against seed predators; E. arborea dispersed before the rainy season, which is expected for a plant that germinates readily after imbibition. Seed dispersal in time was compatible with the type of soil seed bank and post-fire regeneration of the species. The evidence of such a relationship with spatial patterns was weak. The dominance of E. arborea seeds underneath most of the other species suggests that this mid-successional species might dominate when openings form due to the deaths of standing plants of the seeders between two fires, given their lower longevity.
期刊介绍:
Fire Ecology is the international scientific journal supported by the Association for Fire Ecology. Fire Ecology publishes peer-reviewed articles on all ecological and management aspects relating to wildland fire. We welcome submissions on topics that include a broad range of research on the ecological relationships of fire to its environment, including, but not limited to:
Ecology (physical and biological fire effects, fire regimes, etc.)
Social science (geography, sociology, anthropology, etc.)
Fuel
Fire science and modeling
Planning and risk management
Law and policy
Fire management
Inter- or cross-disciplinary fire-related topics
Technology transfer products.