线性粘弹性材料的可变形导数模型

IF 2.1 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Krunal B. Kachhia, Dharti A. Gosai
{"title":"线性粘弹性材料的可变形导数模型","authors":"Krunal B. Kachhia,&nbsp;Dharti A. Gosai","doi":"10.1007/s11043-023-09642-8","DOIUrl":null,"url":null,"abstract":"<div><p>The article deals with fractional viscoelastic models, including conformable derivatives. The Maxwell model and Zener model involving conformable derivative are studied for relaxation modulus as well as for creep compliance. We obtain some mechanical properties from both models, which is very useful for studying material viscoelasticity. Interesting results are extracted and compared to experimental data.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformable derivative models for linear viscoelastic materials\",\"authors\":\"Krunal B. Kachhia,&nbsp;Dharti A. Gosai\",\"doi\":\"10.1007/s11043-023-09642-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article deals with fractional viscoelastic models, including conformable derivatives. The Maxwell model and Zener model involving conformable derivative are studied for relaxation modulus as well as for creep compliance. We obtain some mechanical properties from both models, which is very useful for studying material viscoelasticity. Interesting results are extracted and compared to experimental data.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-023-09642-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-023-09642-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

文章涉及分数粘弹性模型,包括保形导数。文章研究了麦克斯韦模型和涉及保形导数的齐纳模型的松弛模量和蠕变顺应性。我们从这两个模型中获得了一些力学特性,这对研究材料的粘弹性非常有用。我们提取了有趣的结果,并与实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conformable derivative models for linear viscoelastic materials

Conformable derivative models for linear viscoelastic materials

Conformable derivative models for linear viscoelastic materials

The article deals with fractional viscoelastic models, including conformable derivatives. The Maxwell model and Zener model involving conformable derivative are studied for relaxation modulus as well as for creep compliance. We obtain some mechanical properties from both models, which is very useful for studying material viscoelasticity. Interesting results are extracted and compared to experimental data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Time-Dependent Materials
Mechanics of Time-Dependent Materials 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
8.00%
发文量
47
审稿时长
>12 weeks
期刊介绍: Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties. The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信