{"title":"线性粘弹性材料的可变形导数模型","authors":"Krunal B. Kachhia, Dharti A. Gosai","doi":"10.1007/s11043-023-09642-8","DOIUrl":null,"url":null,"abstract":"<div><p>The article deals with fractional viscoelastic models, including conformable derivatives. The Maxwell model and Zener model involving conformable derivative are studied for relaxation modulus as well as for creep compliance. We obtain some mechanical properties from both models, which is very useful for studying material viscoelasticity. Interesting results are extracted and compared to experimental data.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformable derivative models for linear viscoelastic materials\",\"authors\":\"Krunal B. Kachhia, Dharti A. Gosai\",\"doi\":\"10.1007/s11043-023-09642-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The article deals with fractional viscoelastic models, including conformable derivatives. The Maxwell model and Zener model involving conformable derivative are studied for relaxation modulus as well as for creep compliance. We obtain some mechanical properties from both models, which is very useful for studying material viscoelasticity. Interesting results are extracted and compared to experimental data.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-023-09642-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-023-09642-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Conformable derivative models for linear viscoelastic materials
The article deals with fractional viscoelastic models, including conformable derivatives. The Maxwell model and Zener model involving conformable derivative are studied for relaxation modulus as well as for creep compliance. We obtain some mechanical properties from both models, which is very useful for studying material viscoelasticity. Interesting results are extracted and compared to experimental data.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.