{"title":"酶技术和流动化学的共同努力将生物催化工艺的可持续性、效率和生产率提升到新的水平","authors":"Silvia Donzella, Martina Letizia Contente","doi":"10.1007/s41981-023-00286-w","DOIUrl":null,"url":null,"abstract":"<div><p>The number of biocatalyzed reactions at industrial level is growing rapidly together with our understanding on how we can maximize the enzyme efficiency, stability and productivity. While biocatalysis is nowadays recognized as a greener way to operate in chemistry, its combination with continuous processes has lately come up as a powerful tool to enhance process selectivity, productivity and sustainability. This perspective aims at describing the recent advances of this technology and future developments leading to smart, efficient and greener strategies for process optimization and large-scale production.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 1","pages":"85 - 96"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-023-00286-w.pdf","citationCount":"0","resultStr":"{\"title\":\"The joint effort of enzyme technology and flow chemistry to bring biocatalytic processes to the next level of sustainability, efficiency and productivity\",\"authors\":\"Silvia Donzella, Martina Letizia Contente\",\"doi\":\"10.1007/s41981-023-00286-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The number of biocatalyzed reactions at industrial level is growing rapidly together with our understanding on how we can maximize the enzyme efficiency, stability and productivity. While biocatalysis is nowadays recognized as a greener way to operate in chemistry, its combination with continuous processes has lately come up as a powerful tool to enhance process selectivity, productivity and sustainability. This perspective aims at describing the recent advances of this technology and future developments leading to smart, efficient and greener strategies for process optimization and large-scale production.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 1\",\"pages\":\"85 - 96\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-023-00286-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-023-00286-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-023-00286-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The joint effort of enzyme technology and flow chemistry to bring biocatalytic processes to the next level of sustainability, efficiency and productivity
The number of biocatalyzed reactions at industrial level is growing rapidly together with our understanding on how we can maximize the enzyme efficiency, stability and productivity. While biocatalysis is nowadays recognized as a greener way to operate in chemistry, its combination with continuous processes has lately come up as a powerful tool to enhance process selectivity, productivity and sustainability. This perspective aims at describing the recent advances of this technology and future developments leading to smart, efficient and greener strategies for process optimization and large-scale production.
期刊介绍:
The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.