Ting Li , Shutu Xu , Jiawen Zhao , Yapeng Wang , Jun Zhang , Xin Wei , Jianzhou Qu , Ruisu Yu , Xinghua Zhang , Chuang Ma , Jiquan Xue
{"title":"KA105 的基因组组装--玉米分子育种和基因组研究的新资源","authors":"Ting Li , Shutu Xu , Jiawen Zhao , Yapeng Wang , Jun Zhang , Xin Wei , Jianzhou Qu , Ruisu Yu , Xinghua Zhang , Chuang Ma , Jiquan Xue","doi":"10.1016/j.cj.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>Superior inbred lines are central to maize breeding as sources of natural variation. Although many elite lines have been sequenced, less sequencing attention has been paid to newly developed lines. We constructed a genome assembly of the elite inbred line KA105, which has recently been developed by an artificial breeding population named Shaan A and has shown desirable characteristics for breeding. Its pedigree showed genetic divergence from B73 and other lines in its pedigree. Comparison with the B73 reference genome revealed extensive structural variation, 58 presence/absence variation (PAV) genes, and 1023 expanded gene families, some of which may be associated with disease resistance. A network-based integrative analysis of stress-induced transcriptomes identified 13 KA105-specific PAV genes, of which eight were induced by at least one kind of stress, participating in gene modules responding to stress such as drought and southern leaf blight disease. More than 200,000 gene pairs were differentially correlated between KA105 and B73 during kernel development. The KA105 reference genome and transcriptome atlas are a resource for further germplasm improvement and surveys of maize genomic variation and gene function.</p></div>","PeriodicalId":10790,"journal":{"name":"Crop Journal","volume":"11 6","pages":"Pages 1793-1804"},"PeriodicalIF":6.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214514123001174/pdfft?md5=2a70ec5364826ab111b6d61f4371360b&pid=1-s2.0-S2214514123001174-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Genome assembly of KA105, a new resource for maize molecular breeding and genomic research\",\"authors\":\"Ting Li , Shutu Xu , Jiawen Zhao , Yapeng Wang , Jun Zhang , Xin Wei , Jianzhou Qu , Ruisu Yu , Xinghua Zhang , Chuang Ma , Jiquan Xue\",\"doi\":\"10.1016/j.cj.2023.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Superior inbred lines are central to maize breeding as sources of natural variation. Although many elite lines have been sequenced, less sequencing attention has been paid to newly developed lines. We constructed a genome assembly of the elite inbred line KA105, which has recently been developed by an artificial breeding population named Shaan A and has shown desirable characteristics for breeding. Its pedigree showed genetic divergence from B73 and other lines in its pedigree. Comparison with the B73 reference genome revealed extensive structural variation, 58 presence/absence variation (PAV) genes, and 1023 expanded gene families, some of which may be associated with disease resistance. A network-based integrative analysis of stress-induced transcriptomes identified 13 KA105-specific PAV genes, of which eight were induced by at least one kind of stress, participating in gene modules responding to stress such as drought and southern leaf blight disease. More than 200,000 gene pairs were differentially correlated between KA105 and B73 during kernel development. The KA105 reference genome and transcriptome atlas are a resource for further germplasm improvement and surveys of maize genomic variation and gene function.</p></div>\",\"PeriodicalId\":10790,\"journal\":{\"name\":\"Crop Journal\",\"volume\":\"11 6\",\"pages\":\"Pages 1793-1804\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214514123001174/pdfft?md5=2a70ec5364826ab111b6d61f4371360b&pid=1-s2.0-S2214514123001174-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Journal\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214514123001174\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Journal","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214514123001174","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Genome assembly of KA105, a new resource for maize molecular breeding and genomic research
Superior inbred lines are central to maize breeding as sources of natural variation. Although many elite lines have been sequenced, less sequencing attention has been paid to newly developed lines. We constructed a genome assembly of the elite inbred line KA105, which has recently been developed by an artificial breeding population named Shaan A and has shown desirable characteristics for breeding. Its pedigree showed genetic divergence from B73 and other lines in its pedigree. Comparison with the B73 reference genome revealed extensive structural variation, 58 presence/absence variation (PAV) genes, and 1023 expanded gene families, some of which may be associated with disease resistance. A network-based integrative analysis of stress-induced transcriptomes identified 13 KA105-specific PAV genes, of which eight were induced by at least one kind of stress, participating in gene modules responding to stress such as drought and southern leaf blight disease. More than 200,000 gene pairs were differentially correlated between KA105 and B73 during kernel development. The KA105 reference genome and transcriptome atlas are a resource for further germplasm improvement and surveys of maize genomic variation and gene function.
Crop JournalAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
9.90
自引率
3.00%
发文量
638
审稿时长
41 days
期刊介绍:
The major aims of The Crop Journal are to report recent progresses in crop sciences including crop genetics, breeding, agronomy, crop physiology, germplasm resources, grain chemistry, grain storage and processing, crop management practices, crop biotechnology, and biomathematics.
The regular columns of the journal are Original Research Articles, Reviews, and Research Notes. The strict peer-review procedure will guarantee the academic level and raise the reputation of the journal. The readership of the journal is for crop science researchers, students of agricultural colleges and universities, and persons with similar academic levels.