{"title":"模的δ-小交图","authors":"Ahmed H. Alwan","doi":"10.55810/2313-0083.1026","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with unit and M be a unitary left R-module. The δ-small intersection graph of non-trivial submodules of , denoted by , is an undirected simple graph whose vertices are the non-trivial submodules of , and two vertices are adjacent if and only if their intersection is a -small submodule of . In this article, we study the interplay between the algebraic properties of , and the graph properties of such as connectivity, completeness and planarity. Moreover, we determine the exact values of the diameter and girth of , as well as give a formula to compute the clique and domination numbers of","PeriodicalId":218143,"journal":{"name":"Al-Bahir Journal for Engineering and Pure Sciences","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"δ-Small Intersection Graphs of Modules\",\"authors\":\"Ahmed H. Alwan\",\"doi\":\"10.55810/2313-0083.1026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let R be a commutative ring with unit and M be a unitary left R-module. The δ-small intersection graph of non-trivial submodules of , denoted by , is an undirected simple graph whose vertices are the non-trivial submodules of , and two vertices are adjacent if and only if their intersection is a -small submodule of . In this article, we study the interplay between the algebraic properties of , and the graph properties of such as connectivity, completeness and planarity. Moreover, we determine the exact values of the diameter and girth of , as well as give a formula to compute the clique and domination numbers of\",\"PeriodicalId\":218143,\"journal\":{\"name\":\"Al-Bahir Journal for Engineering and Pure Sciences\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Bahir Journal for Engineering and Pure Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55810/2313-0083.1026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Bahir Journal for Engineering and Pure Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55810/2313-0083.1026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let R be a commutative ring with unit and M be a unitary left R-module. The δ-small intersection graph of non-trivial submodules of , denoted by , is an undirected simple graph whose vertices are the non-trivial submodules of , and two vertices are adjacent if and only if their intersection is a -small submodule of . In this article, we study the interplay between the algebraic properties of , and the graph properties of such as connectivity, completeness and planarity. Moreover, we determine the exact values of the diameter and girth of , as well as give a formula to compute the clique and domination numbers of