Peter D. Jones, Tom Stumpp, Michael Mierzejewski, Domenic Pascual, Angelika Stumpf
{"title":"用于神经球体和类器官的可伸缩网状微电极阵列","authors":"Peter D. Jones, Tom Stumpp, Michael Mierzejewski, Domenic Pascual, Angelika Stumpf","doi":"10.1515/cdbme-2023-1144","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: Neural organoids promise to help understand the human brain and develop treatments for neurological diseases. Electrophysiological recordings are essential in neural models to evaluate the activity of neural circuits. Mesh microelectrode arrays (MEAs) have been demonstrated to be suitable for organoids and spheroids, and there is demand for easy-to-use devices that can be manufactured at scale. Methods: We present a new mesh MEA device with an easyto- use design. We produce mesh MEA chips on 100 mm carrier wafers and connect individual chips to PCBs by wirebonding. The devices are completed by assembly of a twopiece well and a glass cover slip. Results: Each device contains a suspended hammock-like mesh with 64 microelectrodes. The square grid’s pitch of 200 μm makes the mesh suitable for typical organoid sizes while spreading the electrodes across a 1.4 mm region. The well is designed for fluid handling by pipetting or pump systems. Impedance measurements indicate a high yield of functional microelectrodes, although further effort is needed to produce consistent low impedances. The devices are compatible with commercial amplifiers, while adaptation of the PCB to other formats will be straightforward. Conclusions: Using scalable production methods, we have developed a mesh MEA device design that offers improved ease-of-use. Next steps will include biological validation in collaboration with partners.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"372 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable mesh microelectrode arrays for neural spheroids and organoids\",\"authors\":\"Peter D. Jones, Tom Stumpp, Michael Mierzejewski, Domenic Pascual, Angelika Stumpf\",\"doi\":\"10.1515/cdbme-2023-1144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: Neural organoids promise to help understand the human brain and develop treatments for neurological diseases. Electrophysiological recordings are essential in neural models to evaluate the activity of neural circuits. Mesh microelectrode arrays (MEAs) have been demonstrated to be suitable for organoids and spheroids, and there is demand for easy-to-use devices that can be manufactured at scale. Methods: We present a new mesh MEA device with an easyto- use design. We produce mesh MEA chips on 100 mm carrier wafers and connect individual chips to PCBs by wirebonding. The devices are completed by assembly of a twopiece well and a glass cover slip. Results: Each device contains a suspended hammock-like mesh with 64 microelectrodes. The square grid’s pitch of 200 μm makes the mesh suitable for typical organoid sizes while spreading the electrodes across a 1.4 mm region. The well is designed for fluid handling by pipetting or pump systems. Impedance measurements indicate a high yield of functional microelectrodes, although further effort is needed to produce consistent low impedances. The devices are compatible with commercial amplifiers, while adaptation of the PCB to other formats will be straightforward. Conclusions: Using scalable production methods, we have developed a mesh MEA device design that offers improved ease-of-use. Next steps will include biological validation in collaboration with partners.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"372 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Scalable mesh microelectrode arrays for neural spheroids and organoids
Abstract Introduction: Neural organoids promise to help understand the human brain and develop treatments for neurological diseases. Electrophysiological recordings are essential in neural models to evaluate the activity of neural circuits. Mesh microelectrode arrays (MEAs) have been demonstrated to be suitable for organoids and spheroids, and there is demand for easy-to-use devices that can be manufactured at scale. Methods: We present a new mesh MEA device with an easyto- use design. We produce mesh MEA chips on 100 mm carrier wafers and connect individual chips to PCBs by wirebonding. The devices are completed by assembly of a twopiece well and a glass cover slip. Results: Each device contains a suspended hammock-like mesh with 64 microelectrodes. The square grid’s pitch of 200 μm makes the mesh suitable for typical organoid sizes while spreading the electrodes across a 1.4 mm region. The well is designed for fluid handling by pipetting or pump systems. Impedance measurements indicate a high yield of functional microelectrodes, although further effort is needed to produce consistent low impedances. The devices are compatible with commercial amplifiers, while adaptation of the PCB to other formats will be straightforward. Conclusions: Using scalable production methods, we have developed a mesh MEA device design that offers improved ease-of-use. Next steps will include biological validation in collaboration with partners.