具有抽象概括功能的语义增强型文本检索框架

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Min Pan, Teng Li, Yu Liu, Quanli Pei, Ellen Anne Huang, Jimmy X. Huang
{"title":"具有抽象概括功能的语义增强型文本检索框架","authors":"Min Pan,&nbsp;Teng Li,&nbsp;Yu Liu,&nbsp;Quanli Pei,&nbsp;Ellen Anne Huang,&nbsp;Jimmy X. Huang","doi":"10.1111/coin.12603","DOIUrl":null,"url":null,"abstract":"<p>Recently, large pretrained language models (PLMs) have led a revolution in the information retrieval community. In most PLMs-based retrieval frameworks, the ranking performance broadly depends on the model structure and the semantic complexity of the input text. Sequence-to-sequence generative models for question answering or text generation have proven to be competitive, so we wonder whether these models can improve ranking effectiveness by enhancing input semantics. This article introduces SE-BERT, a semantically enhanced bidirectional encoder representation from transformers (BERT) based ranking framework that captures more semantic information by modifying the input text. SE-BERT utilizes a pretrained generative language model to summarize both sides of the candidate passage and concatenate them into a new input sequence, allowing BERT to acquire more semantic information within the constraints of the input sequence's length. Experimental results from two Text Retrieval Conference datasets demonstrate that our approach's effectiveness increasing as the length of the input text increases.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12603","citationCount":"0","resultStr":"{\"title\":\"A semantically enhanced text retrieval framework with abstractive summarization\",\"authors\":\"Min Pan,&nbsp;Teng Li,&nbsp;Yu Liu,&nbsp;Quanli Pei,&nbsp;Ellen Anne Huang,&nbsp;Jimmy X. Huang\",\"doi\":\"10.1111/coin.12603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, large pretrained language models (PLMs) have led a revolution in the information retrieval community. In most PLMs-based retrieval frameworks, the ranking performance broadly depends on the model structure and the semantic complexity of the input text. Sequence-to-sequence generative models for question answering or text generation have proven to be competitive, so we wonder whether these models can improve ranking effectiveness by enhancing input semantics. This article introduces SE-BERT, a semantically enhanced bidirectional encoder representation from transformers (BERT) based ranking framework that captures more semantic information by modifying the input text. SE-BERT utilizes a pretrained generative language model to summarize both sides of the candidate passage and concatenate them into a new input sequence, allowing BERT to acquire more semantic information within the constraints of the input sequence's length. Experimental results from two Text Retrieval Conference datasets demonstrate that our approach's effectiveness increasing as the length of the input text increases.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12603\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12603\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12603","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,大型预训练语言模型(PLM)在信息检索领域掀起了一场革命。在大多数基于 PLMs 的检索框架中,排序性能主要取决于模型结构和输入文本的语义复杂性。用于问题解答或文本生成的序列到序列生成模型已被证明具有竞争力,因此我们想知道这些模型是否能通过增强输入语义来提高排名效果。本文介绍了 SE-BERT,这是一种基于转换器(BERT)的语义增强型双向编码器表示排序框架,它通过修改输入文本来捕捉更多语义信息。SE-BERT 利用预训练的生成语言模型来总结候选段落的正反两面,并将它们串联成一个新的输入序列,从而使 BERT 能够在输入序列长度的限制下获取更多语义信息。两个文本检索大会数据集的实验结果表明,随着输入文本长度的增加,我们的方法的有效性也在不断提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A semantically enhanced text retrieval framework with abstractive summarization

A semantically enhanced text retrieval framework with abstractive summarization

Recently, large pretrained language models (PLMs) have led a revolution in the information retrieval community. In most PLMs-based retrieval frameworks, the ranking performance broadly depends on the model structure and the semantic complexity of the input text. Sequence-to-sequence generative models for question answering or text generation have proven to be competitive, so we wonder whether these models can improve ranking effectiveness by enhancing input semantics. This article introduces SE-BERT, a semantically enhanced bidirectional encoder representation from transformers (BERT) based ranking framework that captures more semantic information by modifying the input text. SE-BERT utilizes a pretrained generative language model to summarize both sides of the candidate passage and concatenate them into a new input sequence, allowing BERT to acquire more semantic information within the constraints of the input sequence's length. Experimental results from two Text Retrieval Conference datasets demonstrate that our approach's effectiveness increasing as the length of the input text increases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信