Álvaro López Varela, Daniel Dopico Dopico, Alberto Luaces Fernández
{"title":"带投影的增广拉格朗日指数-3半递推公式","authors":"Álvaro López Varela, Daniel Dopico Dopico, Alberto Luaces Fernández","doi":"10.1007/s11044-023-09928-2","DOIUrl":null,"url":null,"abstract":"Abstract Sensitivity analysis represents a powerful tool for the optimization of multibody system dynamics. The performance of a gradient-based optimization algorithm is strongly tied to the dynamic and the sensitivity formulations considered. The accuracy and efficiency are critical to any optimization problem, thus they are key factors in the selection of the dynamic and sensitivity analysis approaches used to compute an objective function gradient. Semi-recursive methods usually outperform global methods in terms of computational time, even though they involve sometimes demanding recursive procedures. Semi-recursive methods are well suited to be combined with different constraints enforcement schemes as the augmented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-P), taking advantage of the robustness, accurate fulfillment of constraint equations and the low computational burden. The sensitivity analysis of the semi-recursive ALI3-P formulation is studied in this document by means of the direct differentiation method. As a result, a semi-recursive ALI3-P sensitivity formulation is developed for an arbitrary reference point selection, and then two particular versions are unfolded and implemented in the general purpose multibody library MBSLIM, using as reference point the center of mass (RTdyn0) or the global origin of coordinates (RTdyn1). Besides, the detailed derivatives of the recursive terms are provided, which will be useful not only for the direct sensitivity formulation presented herein, but also for other sensitivity formulations relying on the same recursive expressions. The implementation has been tested in two numerical experiments, a five-bar benchmark problem and a buggy vehicle.","PeriodicalId":49792,"journal":{"name":"Multibody System Dynamics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Lagrangian index-3 semi-recursive formulations with projections\",\"authors\":\"Álvaro López Varela, Daniel Dopico Dopico, Alberto Luaces Fernández\",\"doi\":\"10.1007/s11044-023-09928-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sensitivity analysis represents a powerful tool for the optimization of multibody system dynamics. The performance of a gradient-based optimization algorithm is strongly tied to the dynamic and the sensitivity formulations considered. The accuracy and efficiency are critical to any optimization problem, thus they are key factors in the selection of the dynamic and sensitivity analysis approaches used to compute an objective function gradient. Semi-recursive methods usually outperform global methods in terms of computational time, even though they involve sometimes demanding recursive procedures. Semi-recursive methods are well suited to be combined with different constraints enforcement schemes as the augmented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-P), taking advantage of the robustness, accurate fulfillment of constraint equations and the low computational burden. The sensitivity analysis of the semi-recursive ALI3-P formulation is studied in this document by means of the direct differentiation method. As a result, a semi-recursive ALI3-P sensitivity formulation is developed for an arbitrary reference point selection, and then two particular versions are unfolded and implemented in the general purpose multibody library MBSLIM, using as reference point the center of mass (RTdyn0) or the global origin of coordinates (RTdyn1). Besides, the detailed derivatives of the recursive terms are provided, which will be useful not only for the direct sensitivity formulation presented herein, but also for other sensitivity formulations relying on the same recursive expressions. The implementation has been tested in two numerical experiments, a five-bar benchmark problem and a buggy vehicle.\",\"PeriodicalId\":49792,\"journal\":{\"name\":\"Multibody System Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multibody System Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11044-023-09928-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multibody System Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11044-023-09928-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Augmented Lagrangian index-3 semi-recursive formulations with projections
Abstract Sensitivity analysis represents a powerful tool for the optimization of multibody system dynamics. The performance of a gradient-based optimization algorithm is strongly tied to the dynamic and the sensitivity formulations considered. The accuracy and efficiency are critical to any optimization problem, thus they are key factors in the selection of the dynamic and sensitivity analysis approaches used to compute an objective function gradient. Semi-recursive methods usually outperform global methods in terms of computational time, even though they involve sometimes demanding recursive procedures. Semi-recursive methods are well suited to be combined with different constraints enforcement schemes as the augmented Lagrangian index-3 formulation with velocity and acceleration projections (ALI3-P), taking advantage of the robustness, accurate fulfillment of constraint equations and the low computational burden. The sensitivity analysis of the semi-recursive ALI3-P formulation is studied in this document by means of the direct differentiation method. As a result, a semi-recursive ALI3-P sensitivity formulation is developed for an arbitrary reference point selection, and then two particular versions are unfolded and implemented in the general purpose multibody library MBSLIM, using as reference point the center of mass (RTdyn0) or the global origin of coordinates (RTdyn1). Besides, the detailed derivatives of the recursive terms are provided, which will be useful not only for the direct sensitivity formulation presented herein, but also for other sensitivity formulations relying on the same recursive expressions. The implementation has been tested in two numerical experiments, a five-bar benchmark problem and a buggy vehicle.
期刊介绍:
The journal Multibody System Dynamics treats theoretical and computational methods in rigid and flexible multibody systems, their application, and the experimental procedures used to validate the theoretical foundations.
The research reported addresses computational and experimental aspects and their application to classical and emerging fields in science and technology. Both development and application aspects of multibody dynamics are relevant, in particular in the fields of control, optimization, real-time simulation, parallel computation, workspace and path planning, reliability, and durability. The journal also publishes articles covering application fields such as vehicle dynamics, aerospace technology, robotics and mechatronics, machine dynamics, crashworthiness, biomechanics, artificial intelligence, and system identification if they involve or contribute to the field of Multibody System Dynamics.