Yu-Qin Mao , Guang-He Dong , Wei-Bin Zhu , Yuan-Qing Li , Pei Huang , Shao-Yun Fu
{"title":"新型夹层结构玻璃纤维布/聚(环氧乙烷)-MXene 复合电解质","authors":"Yu-Qin Mao , Guang-He Dong , Wei-Bin Zhu , Yuan-Qing Li , Pei Huang , Shao-Yun Fu","doi":"10.1016/j.nanoms.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 °C reaches 5.01 × 10<sup>−2</sup> S m<sup>−1</sup>, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 h (0.3 mA cm<sup>−2</sup>, 0.3 mAh cm<sup>−2</sup>), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO<sub>4</sub> battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g<sup>−1</sup> in a wide temperature range of 25–60 °C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 1","pages":"Pages 60-67"},"PeriodicalIF":9.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000016/pdfft?md5=81801d0f0159870b8ce0b3199c6b073c&pid=1-s2.0-S2589965123000016-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte\",\"authors\":\"Yu-Qin Mao , Guang-He Dong , Wei-Bin Zhu , Yuan-Qing Li , Pei Huang , Shao-Yun Fu\",\"doi\":\"10.1016/j.nanoms.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 °C reaches 5.01 × 10<sup>−2</sup> S m<sup>−1</sup>, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 h (0.3 mA cm<sup>−2</sup>, 0.3 mAh cm<sup>−2</sup>), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO<sub>4</sub> battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g<sup>−1</sup> in a wide temperature range of 25–60 °C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"6 1\",\"pages\":\"Pages 60-67\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000016/pdfft?md5=81801d0f0159870b8ce0b3199c6b073c&pid=1-s2.0-S2589965123000016-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000016\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000016","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti3C2Tx MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 °C reaches 5.01 × 10−2 S m−1, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 h (0.3 mA cm−2, 0.3 mAh cm−2), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO4 battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g−1 in a wide temperature range of 25–60 °C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
期刊介绍:
Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.