新型夹层结构玻璃纤维布/聚(环氧乙烷)-MXene 复合电解质

IF 9.9 2区 材料科学 Q1 Engineering
Yu-Qin Mao , Guang-He Dong , Wei-Bin Zhu , Yuan-Qing Li , Pei Huang , Shao-Yun Fu
{"title":"新型夹层结构玻璃纤维布/聚(环氧乙烷)-MXene 复合电解质","authors":"Yu-Qin Mao ,&nbsp;Guang-He Dong ,&nbsp;Wei-Bin Zhu ,&nbsp;Yuan-Qing Li ,&nbsp;Pei Huang ,&nbsp;Shao-Yun Fu","doi":"10.1016/j.nanoms.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 ​MPa and an impressive Young's modulus of 496 ​MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 ​°C reaches 5.01 ​× ​10<sup>−2</sup> ​S ​m<sup>−1</sup>, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 ​h (0.3 ​mA ​cm<sup>−2</sup>, 0.3 ​mAh cm<sup>−2</sup>), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO<sub>4</sub> battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 ​mAh g<sup>−1</sup> in a wide temperature range of 25–60 ​°C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":"6 1","pages":"Pages 60-67"},"PeriodicalIF":9.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589965123000016/pdfft?md5=81801d0f0159870b8ce0b3199c6b073c&pid=1-s2.0-S2589965123000016-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte\",\"authors\":\"Yu-Qin Mao ,&nbsp;Guang-He Dong ,&nbsp;Wei-Bin Zhu ,&nbsp;Yuan-Qing Li ,&nbsp;Pei Huang ,&nbsp;Shao-Yun Fu\",\"doi\":\"10.1016/j.nanoms.2023.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 ​MPa and an impressive Young's modulus of 496 ​MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 ​°C reaches 5.01 ​× ​10<sup>−2</sup> ​S ​m<sup>−1</sup>, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 ​h (0.3 ​mA ​cm<sup>−2</sup>, 0.3 ​mAh cm<sup>−2</sup>), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO<sub>4</sub> battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 ​mAh g<sup>−1</sup> in a wide temperature range of 25–60 ​°C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":\"6 1\",\"pages\":\"Pages 60-67\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000016/pdfft?md5=81801d0f0159870b8ce0b3199c6b073c&pid=1-s2.0-S2589965123000016-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589965123000016\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589965123000016","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

最近,聚环氧乙烷(PEO)基固体聚合物电解质引起了人们的极大关注,目前人们正在努力开发用于下一代高性能全固态锂金属电池的 PEO 基复合电解质。本文为高性能全固态锂金属电池开发了一种新型夹层结构固态 PEO 复合电解质。这种基于 PEO 的复合电解质是通过将 PEO、LiTFSI 和 Ti3C2Tx MXene 纳米片材热压到玻璃纤维布(GFC)中制成的。制备的 GFC@PEO-MXene 电解质具有较高的机械性能、良好的电化学稳定性和较高的锂离子迁移数,这表明微尺度的 GFC 和纳米级的 MXene 具有明显的协同效应。例如,GFC@PEO-1 wt% MXene 电解质的抗拉强度高达 43.43 MPa,杨氏模量高达 496 MPa,分别比 PEO 提高了 1205% 和 6048%。同时,GFC@PEO-1 wt% MXene 在 60 °C 时的离子电导率达到 5.01 × 10-2 S m-1,与 GFC@PEO 电解质相比提高了约 200%。此外,由于 GFC@PEO-1 wt% MXene 电解质与锂阳极的相容性更好,基于 GFC@PEO-1 wt% MXene 电解质的锂/锂对称电池在 800 h(0.3 mA cm-2,0.3 mAh cm-2)内表现出优异的循环稳定性,明显长于基于 PEO 和 GFC@PEO 电解质的电池。此外,以 GFC@PEO-1 wt% MXene 为电解质的固态 Li/LiFePO4 电池在 25-60 °C 的宽温度范围内显示出 110.2-166.1 mAh g-1 的高容量和出色的容量保持率。所开发的夹层结构 GFC@PEO-1 wt% MXene 电解质具有优异的综合性能,有望用于下一代高性能全固态锂金属电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte

Recently, poly(ethylene oxide) (PEO)-based solid polymer electrolytes have been attracting great attention, and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries. In this article, a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries. The PEO-based composite electrolyte is fabricated by hot-pressing PEO, LiTFSI and Ti3C2Tx MXene nanosheets into glass fiber cloth (GFC). The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties, good electrochemical stability, and high lithium-ion migration number, which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene. Such as, the GFC@PEO-1 wt% MXene electrolyte shows a high tensile strength of 43.43 ​MPa and an impressive Young's modulus of 496 ​MPa, which are increased by 1205% and 6048% over those of PEO. Meanwhile, the ionic conductivity of GFC@PEO-1 wt% MXene at 60 ​°C reaches 5.01 ​× ​10−2 ​S ​m−1, which is increased by around 200% compared with that of GFC@PEO electrolyte. In addition, the Li/Li symmetric battery based on GFC@PEO-1 wt% MXene electrolyte shows an excellent cycling stability over 800 ​h (0.3 ​mA ​cm−2, 0.3 ​mAh cm−2), which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt% MXene electrolyte with Li anode. Furthermore, the solid-state Li/LiFePO4 battery with GFC@PEO-1 wt% MXene as electrolyte demonstrates a high capacity of 110.2–166.1 ​mAh g−1 in a wide temperature range of 25–60 ​°C, and an excellent capacity retention rate. The developed sandwich structured GFC@PEO-1 wt% MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信