{"title":"利用TCAD模拟器设计基于硅反馈场效应管的二、三元逻辑逆变器","authors":"Ashkan Horri","doi":"10.1049/2023/8833764","DOIUrl":null,"url":null,"abstract":"A feedback field effect transistor (FBFET) with p-n-p-n structure benefits from a positive feedback mechanism. In this structure, the accumulated charges in its potential well and limitation of carrier flow by its internal potential barrier lead to superior electrical properties such as lower subthreshold swing (SS) and higher <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <msub> <mi>I</mi> <mtext>ON</mtext> </msub> <mo>/</mo> <msub> <mi>I</mi> <mtext>OFF</mtext> </msub> </math> ratio in comparison with FinFET. Thus, FBFET is a promising alternative for digital applications such as logic inverters. In this paper, binary and ternary logic inverters are designed by using FBFETs with 40 nm channel length. The doping profile in the device plays an essential role and specifies the binary or ternary operation of the inverter. The inverter is analyzed by using a TCAD mixed-mode simulator. The results indicate the high value of 1010 for <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <msub> <mi>I</mi> <mtext>ON</mtext> </msub> <mo>/</mo> <msub> <mi>I</mi> <mtext>OFF</mtext> </msub> </math> ratio with an extremely low SS (1 mV/decade). The voltage transfer characteristics of the inverter and its dependence on doping levels have been investigated. Also, the electrical properties of this inverter are compared with previous inverter counterparts.","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"47 12","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Binary and Ternary Logic Inverters Based on Silicon Feedback FETs Using TCAD Simulator\",\"authors\":\"Ashkan Horri\",\"doi\":\"10.1049/2023/8833764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A feedback field effect transistor (FBFET) with p-n-p-n structure benefits from a positive feedback mechanism. In this structure, the accumulated charges in its potential well and limitation of carrier flow by its internal potential barrier lead to superior electrical properties such as lower subthreshold swing (SS) and higher <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\"> <msub> <mi>I</mi> <mtext>ON</mtext> </msub> <mo>/</mo> <msub> <mi>I</mi> <mtext>OFF</mtext> </msub> </math> ratio in comparison with FinFET. Thus, FBFET is a promising alternative for digital applications such as logic inverters. In this paper, binary and ternary logic inverters are designed by using FBFETs with 40 nm channel length. The doping profile in the device plays an essential role and specifies the binary or ternary operation of the inverter. The inverter is analyzed by using a TCAD mixed-mode simulator. The results indicate the high value of 1010 for <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\"> <msub> <mi>I</mi> <mtext>ON</mtext> </msub> <mo>/</mo> <msub> <mi>I</mi> <mtext>OFF</mtext> </msub> </math> ratio with an extremely low SS (1 mV/decade). The voltage transfer characteristics of the inverter and its dependence on doping levels have been investigated. Also, the electrical properties of this inverter are compared with previous inverter counterparts.\",\"PeriodicalId\":50386,\"journal\":{\"name\":\"Iet Circuits Devices & Systems\",\"volume\":\"47 12\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Circuits Devices & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/8833764\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/8833764","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
具有p-n-p-n结构的反馈场效应晶体管(FBFET)得益于正反馈机制。在这种结构中,与FinFET相比,电势阱中的累积电荷和内部势垒对载流子流动的限制导致了更优越的电学性能,例如更低的亚阈值摆幅(SS)和更高的I ON / I OFF比。因此,fbet是一种很有前途的数字应用替代方案,如逻辑逆变器。本文采用40 nm通道长度的fbfet设计了二、三元逻辑逆变器。器件中的掺杂剖面起着至关重要的作用,它规定了逆变器的二进制或三元操作。利用TCAD混合模模拟器对逆变器进行了分析。结果表明,在极低的SS (1 mV/ 10)下,I - ON / I - OFF比的高值为1010。研究了逆变器的电压传递特性及其与掺杂水平的关系。并将该逆变器的电学性能与以往同类逆变器进行了比较。
Design of Binary and Ternary Logic Inverters Based on Silicon Feedback FETs Using TCAD Simulator
A feedback field effect transistor (FBFET) with p-n-p-n structure benefits from a positive feedback mechanism. In this structure, the accumulated charges in its potential well and limitation of carrier flow by its internal potential barrier lead to superior electrical properties such as lower subthreshold swing (SS) and higher ratio in comparison with FinFET. Thus, FBFET is a promising alternative for digital applications such as logic inverters. In this paper, binary and ternary logic inverters are designed by using FBFETs with 40 nm channel length. The doping profile in the device plays an essential role and specifies the binary or ternary operation of the inverter. The inverter is analyzed by using a TCAD mixed-mode simulator. The results indicate the high value of 1010 for ratio with an extremely low SS (1 mV/decade). The voltage transfer characteristics of the inverter and its dependence on doping levels have been investigated. Also, the electrical properties of this inverter are compared with previous inverter counterparts.
期刊介绍:
IET Circuits, Devices & Systems covers the following topics:
Circuit theory and design, circuit analysis and simulation, computer aided design
Filters (analogue and switched capacitor)
Circuit implementations, cells and architectures for integration including VLSI
Testability, fault tolerant design, minimisation of circuits and CAD for VLSI
Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs
Device and process characterisation, device parameter extraction schemes
Mathematics of circuits and systems theory
Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers