Mohammadamin Moradi, Yang Weng, John Dirkman, Ying-Cheng Lai
{"title":"电网优先网络防御","authors":"Mohammadamin Moradi, Yang Weng, John Dirkman, Ying-Cheng Lai","doi":"10.1103/prxenergy.2.043007","DOIUrl":null,"url":null,"abstract":"To safeguard electric power grids from random failures and cyberattacks, a reinforcement learning approach is developed using linear temporal logic to efficiently allocate limited resources, promising improved defense for critical cyberphysical systems.","PeriodicalId":311086,"journal":{"name":"PRX Energy","volume":"297 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preferential Cyber Defense for Power Grids\",\"authors\":\"Mohammadamin Moradi, Yang Weng, John Dirkman, Ying-Cheng Lai\",\"doi\":\"10.1103/prxenergy.2.043007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To safeguard electric power grids from random failures and cyberattacks, a reinforcement learning approach is developed using linear temporal logic to efficiently allocate limited resources, promising improved defense for critical cyberphysical systems.\",\"PeriodicalId\":311086,\"journal\":{\"name\":\"PRX Energy\",\"volume\":\"297 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxenergy.2.043007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxenergy.2.043007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
To safeguard electric power grids from random failures and cyberattacks, a reinforcement learning approach is developed using linear temporal logic to efficiently allocate limited resources, promising improved defense for critical cyberphysical systems.