{"title":"低惯量微电网条件下成网变流器鲁棒自适应控制器设计","authors":"Watcharakorn Pinthurat, Prayad Kongsuk, Boonruang Marungsri","doi":"10.3390/smartcities6050132","DOIUrl":null,"url":null,"abstract":"As the integration of renewable energy sources (RESs) and distributed generations (DGs) increases, the need for stable and reliable operation of microgrids (MGs) becomes crucial. However, the inherent low inertia of such systems poses intricate control challenges that necessitate innovative solutions. To tackle these issues, this paper presents the development of robust-adaptive controllers tailored specifically for grid-forming (GFM) converters. The proposed adaptive-robust controllers are designed to accommodate the diverse range of scenarios encountered in low-inertia MGs. The proposed approach applies both the robust control techniques and adaptive control strategies, thereby offering an effective means to ensure stable and seamless converter performance under varying operating conditions. The efficacy of the introduced adaptive-robust controllers for GFM converters is validated within a low-inertia MG, which is characterized by substantial penetration of converter-interfaced resources. The validation also encompasses diverse MG operational scenarios and conditions.","PeriodicalId":34482,"journal":{"name":"Smart Cities","volume":"46 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust-Adaptive Controllers Designed for Grid-Forming Converters Ensuring Various Low-Inertia Microgrid Conditions\",\"authors\":\"Watcharakorn Pinthurat, Prayad Kongsuk, Boonruang Marungsri\",\"doi\":\"10.3390/smartcities6050132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the integration of renewable energy sources (RESs) and distributed generations (DGs) increases, the need for stable and reliable operation of microgrids (MGs) becomes crucial. However, the inherent low inertia of such systems poses intricate control challenges that necessitate innovative solutions. To tackle these issues, this paper presents the development of robust-adaptive controllers tailored specifically for grid-forming (GFM) converters. The proposed adaptive-robust controllers are designed to accommodate the diverse range of scenarios encountered in low-inertia MGs. The proposed approach applies both the robust control techniques and adaptive control strategies, thereby offering an effective means to ensure stable and seamless converter performance under varying operating conditions. The efficacy of the introduced adaptive-robust controllers for GFM converters is validated within a low-inertia MG, which is characterized by substantial penetration of converter-interfaced resources. The validation also encompasses diverse MG operational scenarios and conditions.\",\"PeriodicalId\":34482,\"journal\":{\"name\":\"Smart Cities\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Cities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/smartcities6050132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/smartcities6050132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Robust-Adaptive Controllers Designed for Grid-Forming Converters Ensuring Various Low-Inertia Microgrid Conditions
As the integration of renewable energy sources (RESs) and distributed generations (DGs) increases, the need for stable and reliable operation of microgrids (MGs) becomes crucial. However, the inherent low inertia of such systems poses intricate control challenges that necessitate innovative solutions. To tackle these issues, this paper presents the development of robust-adaptive controllers tailored specifically for grid-forming (GFM) converters. The proposed adaptive-robust controllers are designed to accommodate the diverse range of scenarios encountered in low-inertia MGs. The proposed approach applies both the robust control techniques and adaptive control strategies, thereby offering an effective means to ensure stable and seamless converter performance under varying operating conditions. The efficacy of the introduced adaptive-robust controllers for GFM converters is validated within a low-inertia MG, which is characterized by substantial penetration of converter-interfaced resources. The validation also encompasses diverse MG operational scenarios and conditions.
期刊介绍:
Smart Cities (ISSN 2624-6511) provides an advanced forum for the dissemination of information on the science and technology of smart cities, publishing reviews, regular research papers (articles) and communications in all areas of research concerning smart cities. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible, with no restriction on the maximum length of the papers published so that all experimental results can be reproduced.