Strassen最优运输问题的渐近性

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY
Lei Yu
{"title":"Strassen最优运输问题的渐近性","authors":"Lei Yu","doi":"10.1214/22-aihp1258","DOIUrl":null,"url":null,"abstract":"Dans cet article, nous considérons la version de Strassen du problème de transport optimal (TO), qui porte sur la minimisation de la probabilité de surcoût (c’est-à-dire la probabilité que le coût soit supérieur à une valeur donnée) sur tous les couplages de deux distributions données. Nous obtenons des théorèmes de grande déviation, de déviation modérée et de limite centrale pour ce problème. Notre preuve est basée sur la formulation duale du problème TO introduite par Strassen, le théorème de Sanov sur le principe de grande déviation (PGD) des mesures empiriques, ainsi que le principe de déviation modérée (PDM) et les théorèmes centraux limites (TCL) des mesures empiriques. Afin d’appliquer les PGD, PDM et TLC au problème TO de Strassen, des formules imbriquées pour le problème TO de Strassen sont établies. Sur la base de ces formules imbriquées et en utilisant une technique de division, nous construisons des solutions asymptotiquement optimales au problème TO de Strassen et à sa formulation duale.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"55 11","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Asymptotics for Strassen’s optimal transport problem\",\"authors\":\"Lei Yu\",\"doi\":\"10.1214/22-aihp1258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dans cet article, nous considérons la version de Strassen du problème de transport optimal (TO), qui porte sur la minimisation de la probabilité de surcoût (c’est-à-dire la probabilité que le coût soit supérieur à une valeur donnée) sur tous les couplages de deux distributions données. Nous obtenons des théorèmes de grande déviation, de déviation modérée et de limite centrale pour ce problème. Notre preuve est basée sur la formulation duale du problème TO introduite par Strassen, le théorème de Sanov sur le principe de grande déviation (PGD) des mesures empiriques, ainsi que le principe de déviation modérée (PDM) et les théorèmes centraux limites (TCL) des mesures empiriques. Afin d’appliquer les PGD, PDM et TLC au problème TO de Strassen, des formules imbriquées pour le problème TO de Strassen sont établies. Sur la base de ces formules imbriquées et en utilisant une technique de division, nous construisons des solutions asymptotiquement optimales au problème TO de Strassen et à sa formulation duale.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"55 11\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1258\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1258","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们考虑Strassen版本的最优传输问题(TO),它关注的是在两个给定分布的所有耦合上最小化额外成本概率(即成本高于给定值的概率)。我们得到了该问题的大偏差、中等偏差和中心极限定理。我们的证明是基于Strassen提出的TO问题的对偶公式,经验测量的Sanov大偏差原理(PGD)定理,以及经验测量的中等偏差原理(PDM)和中心极限定理(TCL)。为了将PGD、PDM和TLC应用于Strassen TO问题,建立了Strassen TO问题的嵌套公式。在这些嵌套公式的基础上,利用除法技术,构造了Strassen TO问题及其对偶公式的渐近最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics for Strassen’s optimal transport problem
Dans cet article, nous considérons la version de Strassen du problème de transport optimal (TO), qui porte sur la minimisation de la probabilité de surcoût (c’est-à-dire la probabilité que le coût soit supérieur à une valeur donnée) sur tous les couplages de deux distributions données. Nous obtenons des théorèmes de grande déviation, de déviation modérée et de limite centrale pour ce problème. Notre preuve est basée sur la formulation duale du problème TO introduite par Strassen, le théorème de Sanov sur le principe de grande déviation (PGD) des mesures empiriques, ainsi que le principe de déviation modérée (PDM) et les théorèmes centraux limites (TCL) des mesures empiriques. Afin d’appliquer les PGD, PDM et TLC au problème TO de Strassen, des formules imbriquées pour le problème TO de Strassen sont établies. Sur la base de ces formules imbriquées et en utilisant une technique de division, nous construisons des solutions asymptotiquement optimales au problème TO de Strassen et à sa formulation duale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信