{"title":"非厄米随机矩阵的泛函CLT","authors":"László Erdős, Hong Chang Ji","doi":"10.1214/22-aihp1304","DOIUrl":null,"url":null,"abstract":"On étudie les fluctuations de f(X), où X est une matrice aléatoire non-hermitienne de grande taille à coefficients i.i.d. (réels ou complexes), et f une fonction analytique sur un domaine qui contient le spectre de X. On prouve que, pour une matrice carrée générique et bornée A, les fluctuations de la quantité trf(X)A sont asymptotiquement gaussiennes et comportent deux modes indépendants, correspondant aux composantes traciale et de trace nulle de A. Une nouvelle formule est établie pour la variance de la composante de trace nulle, qui fait intervenir la norme de Frobenius de A et la norme L2 de f sur la frontière du spectre limite.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"56 11-12","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional CLT for non-Hermitian random matrices\",\"authors\":\"László Erdős, Hong Chang Ji\",\"doi\":\"10.1214/22-aihp1304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On étudie les fluctuations de f(X), où X est une matrice aléatoire non-hermitienne de grande taille à coefficients i.i.d. (réels ou complexes), et f une fonction analytique sur un domaine qui contient le spectre de X. On prouve que, pour une matrice carrée générique et bornée A, les fluctuations de la quantité trf(X)A sont asymptotiquement gaussiennes et comportent deux modes indépendants, correspondant aux composantes traciale et de trace nulle de A. Une nouvelle formule est établie pour la variance de la composante de trace nulle, qui fait intervenir la norme de Frobenius de A et la norme L2 de f sur la frontière du spectre limite.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"56 11-12\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aihp1304\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aihp1304","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
摘要
目前正在为f (X)的起伏,其中X是一个随机矩阵non-hermitienne系数较大的(实际或复杂i.i.d),和上一个解析函数f域包含一个X射线谱通可以证明,对于一个方阵和固执,波动量了frr A (X)是asymptotiquement gaussiennes并包含两个独立的模式,对应于A的痕量分量和零痕量分量,建立了零痕量分量方差的新公式,其中A的Frobenius范数和f的L2范数在极限谱的边界上。
On étudie les fluctuations de f(X), où X est une matrice aléatoire non-hermitienne de grande taille à coefficients i.i.d. (réels ou complexes), et f une fonction analytique sur un domaine qui contient le spectre de X. On prouve que, pour une matrice carrée générique et bornée A, les fluctuations de la quantité trf(X)A sont asymptotiquement gaussiennes et comportent deux modes indépendants, correspondant aux composantes traciale et de trace nulle de A. Une nouvelle formule est établie pour la variance de la composante de trace nulle, qui fait intervenir la norme de Frobenius de A et la norme L2 de f sur la frontière du spectre limite.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.