Weixue Cao, Xudong Zhang, Wanxiang Yao, Run Sun, Yutong Du, Quanbin Shi, Zipeng Li
{"title":"基于病毒污染控制的医院输液室通风与空调系统方案比较研究","authors":"Weixue Cao, Xudong Zhang, Wanxiang Yao, Run Sun, Yutong Du, Quanbin Shi, Zipeng Li","doi":"10.1007/s10453-023-09801-x","DOIUrl":null,"url":null,"abstract":"<div><p>COVID-19 is transmitted through droplets or aerosols containing the virus, the very small particles exhaled by infected people or exposure to items infected with the virus. These droplets, aerosols and particles may be inhaled by others, or fall into their eyes, mouth and nose. In some cases, they may contaminate the contact surface. It is most likely to be infected if they are less than 1 m away from the infected person. To evaluate the effects of different air conditioning systems on the spread of human exhaled pollutants, computational fluid dynamics (CFD) was used to study the movement and diffusion of exhaled air from two rows of 12 sitting adults in a hospital's closed transfusion room. In this paper, a closed transfusion room with 12 human models was established firstly, and the mathematical model verified by experimental test results was used to study the propagation of viral aerosol particles in the enclosed space under different air conditioning systems. The result showed that when the transverse strong air flow is generated in the room, the concentration distribution of virus particles will show a roll like distribution and the personnel inside the roll will cause new infection. The air flow generated by the air conditioning system will affect the dispersion of droplets in the air. Evaluating and guiding the air flow to avoid blowing air from one person to another may reduce the risk.</p></div>","PeriodicalId":7718,"journal":{"name":"Aerobiologia","volume":"39 4","pages":"429 - 439"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative study on ventilation and air conditioning system schemes based on virus pollution control in hospital infusion room\",\"authors\":\"Weixue Cao, Xudong Zhang, Wanxiang Yao, Run Sun, Yutong Du, Quanbin Shi, Zipeng Li\",\"doi\":\"10.1007/s10453-023-09801-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>COVID-19 is transmitted through droplets or aerosols containing the virus, the very small particles exhaled by infected people or exposure to items infected with the virus. These droplets, aerosols and particles may be inhaled by others, or fall into their eyes, mouth and nose. In some cases, they may contaminate the contact surface. It is most likely to be infected if they are less than 1 m away from the infected person. To evaluate the effects of different air conditioning systems on the spread of human exhaled pollutants, computational fluid dynamics (CFD) was used to study the movement and diffusion of exhaled air from two rows of 12 sitting adults in a hospital's closed transfusion room. In this paper, a closed transfusion room with 12 human models was established firstly, and the mathematical model verified by experimental test results was used to study the propagation of viral aerosol particles in the enclosed space under different air conditioning systems. The result showed that when the transverse strong air flow is generated in the room, the concentration distribution of virus particles will show a roll like distribution and the personnel inside the roll will cause new infection. The air flow generated by the air conditioning system will affect the dispersion of droplets in the air. Evaluating and guiding the air flow to avoid blowing air from one person to another may reduce the risk.</p></div>\",\"PeriodicalId\":7718,\"journal\":{\"name\":\"Aerobiologia\",\"volume\":\"39 4\",\"pages\":\"429 - 439\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerobiologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10453-023-09801-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerobiologia","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10453-023-09801-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Comparative study on ventilation and air conditioning system schemes based on virus pollution control in hospital infusion room
COVID-19 is transmitted through droplets or aerosols containing the virus, the very small particles exhaled by infected people or exposure to items infected with the virus. These droplets, aerosols and particles may be inhaled by others, or fall into their eyes, mouth and nose. In some cases, they may contaminate the contact surface. It is most likely to be infected if they are less than 1 m away from the infected person. To evaluate the effects of different air conditioning systems on the spread of human exhaled pollutants, computational fluid dynamics (CFD) was used to study the movement and diffusion of exhaled air from two rows of 12 sitting adults in a hospital's closed transfusion room. In this paper, a closed transfusion room with 12 human models was established firstly, and the mathematical model verified by experimental test results was used to study the propagation of viral aerosol particles in the enclosed space under different air conditioning systems. The result showed that when the transverse strong air flow is generated in the room, the concentration distribution of virus particles will show a roll like distribution and the personnel inside the roll will cause new infection. The air flow generated by the air conditioning system will affect the dispersion of droplets in the air. Evaluating and guiding the air flow to avoid blowing air from one person to another may reduce the risk.
期刊介绍:
Associated with the International Association for Aerobiology, Aerobiologia is an international medium for original research and review articles in the interdisciplinary fields of aerobiology and interaction of human, plant and animal systems on the biosphere. Coverage includes bioaerosols, transport mechanisms, biometeorology, climatology, air-sea interaction, land-surface/atmosphere interaction, biological pollution, biological input to global change, microbiology, aeromycology, aeropalynology, arthropod dispersal and environmental policy. Emphasis is placed on respiratory allergology, plant pathology, pest management, biological weathering and biodeterioration, indoor air quality, air-conditioning technology, industrial aerobiology and more.
Aerobiologia serves aerobiologists, and other professionals in medicine, public health, industrial and environmental hygiene, biological sciences, agriculture, atmospheric physics, botany, environmental science and cultural heritage.