Yuna Asagoshi, Eri Hitomi, Noriko Nakamura, Seiji Takeda
{"title":"近距离种植的花园玫瑰与野生玫瑰的基因流动研究","authors":"Yuna Asagoshi, Eri Hitomi, Noriko Nakamura, Seiji Takeda","doi":"10.5511/plantbiotechnology.23.0708a","DOIUrl":null,"url":null,"abstract":"Rose is a major ornamental plant, and a lot of cultivars with attractive morphology, color and scent have been generated by classical breeding. Recent progress of genetic modification produces a novel cultivar with attractive features. In both cases, a major problem is the gene-flow from cultivated or genetically modified (GM) plants to wild species, causing reduction of natural population. To investigate whether gene-flow occurs in wild species, molecular analysis with DNA markers with higher efficient technique is useful. Here we investigated the gene-flow from cultivated roses (Rosa×hybrida) to wild rose species planted in close distance in the field. The overlapping flowering periods and visiting insects suggest that pollens were transported by insects between wild and cultivated roses. We examined the germination ratio of seeds from wild species, and extracted DNA and checked with KSN and APETALA2 (AP2) DNA markers to detect transposon insertions. Using two markers, we successfully detected the outcross between wild and cultivated roses. For higher efficiency, we established a bulking method, where DNA, leaves or embryos were pooled, enabling us to that check the outcross of many plants. Our results suggest that wild species and garden cultivars can cross in close distance, so that they should be planted in distance, and checked the outcross with multiple DNA markers.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"70 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene-flow investigation between garden and wild roses planted in close distance\",\"authors\":\"Yuna Asagoshi, Eri Hitomi, Noriko Nakamura, Seiji Takeda\",\"doi\":\"10.5511/plantbiotechnology.23.0708a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rose is a major ornamental plant, and a lot of cultivars with attractive morphology, color and scent have been generated by classical breeding. Recent progress of genetic modification produces a novel cultivar with attractive features. In both cases, a major problem is the gene-flow from cultivated or genetically modified (GM) plants to wild species, causing reduction of natural population. To investigate whether gene-flow occurs in wild species, molecular analysis with DNA markers with higher efficient technique is useful. Here we investigated the gene-flow from cultivated roses (Rosa×hybrida) to wild rose species planted in close distance in the field. The overlapping flowering periods and visiting insects suggest that pollens were transported by insects between wild and cultivated roses. We examined the germination ratio of seeds from wild species, and extracted DNA and checked with KSN and APETALA2 (AP2) DNA markers to detect transposon insertions. Using two markers, we successfully detected the outcross between wild and cultivated roses. For higher efficiency, we established a bulking method, where DNA, leaves or embryos were pooled, enabling us to that check the outcross of many plants. Our results suggest that wild species and garden cultivars can cross in close distance, so that they should be planted in distance, and checked the outcross with multiple DNA markers.\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.23.0708a\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.23.0708a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Gene-flow investigation between garden and wild roses planted in close distance
Rose is a major ornamental plant, and a lot of cultivars with attractive morphology, color and scent have been generated by classical breeding. Recent progress of genetic modification produces a novel cultivar with attractive features. In both cases, a major problem is the gene-flow from cultivated or genetically modified (GM) plants to wild species, causing reduction of natural population. To investigate whether gene-flow occurs in wild species, molecular analysis with DNA markers with higher efficient technique is useful. Here we investigated the gene-flow from cultivated roses (Rosa×hybrida) to wild rose species planted in close distance in the field. The overlapping flowering periods and visiting insects suggest that pollens were transported by insects between wild and cultivated roses. We examined the germination ratio of seeds from wild species, and extracted DNA and checked with KSN and APETALA2 (AP2) DNA markers to detect transposon insertions. Using two markers, we successfully detected the outcross between wild and cultivated roses. For higher efficiency, we established a bulking method, where DNA, leaves or embryos were pooled, enabling us to that check the outcross of many plants. Our results suggest that wild species and garden cultivars can cross in close distance, so that they should be planted in distance, and checked the outcross with multiple DNA markers.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.