{"title":"多面体球上的弱简单闭拟椭球线","authors":"Jean Chartier, Arnaud de Mesmay","doi":"10.1007/s00454-023-00511-2","DOIUrl":null,"url":null,"abstract":"A closed quasigeodesic on a convex polyhedron is a closed curve that is locally straight outside of the vertices, where it forms an angle at most $$\\pi $$ on both sides. While the existence of a simple closed quasigeodesic on a convex polyhedron has been proved by Pogorelov in 1949, finding a polynomial-time algorithm to compute such a simple closed quasigeodesic has been repeatedly posed as an open problem. Our first contribution is to propose an extended definition of quasigeodesics in the intrinsic setting of (not necessarily convex) polyhedral spheres, and to prove the existence of a weakly simple closed quasigeodesic in such a setting. Our proof does not proceed via an approximation by smooth surfaces, but relies on an adaptation of the disk flow of Hass and Scott to the context of polyhedral surfaces. Our second result is to leverage this existence theorem to provide a finite algorithm to compute a weakly simple closed quasigeodesic on a polyhedral sphere. On a convex polyhedron, our algorithm computes a simple closed quasigeodesic, solving an open problem of Demaine, Hersterberg, and Ku.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres\",\"authors\":\"Jean Chartier, Arnaud de Mesmay\",\"doi\":\"10.1007/s00454-023-00511-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A closed quasigeodesic on a convex polyhedron is a closed curve that is locally straight outside of the vertices, where it forms an angle at most $$\\\\pi $$ on both sides. While the existence of a simple closed quasigeodesic on a convex polyhedron has been proved by Pogorelov in 1949, finding a polynomial-time algorithm to compute such a simple closed quasigeodesic has been repeatedly posed as an open problem. Our first contribution is to propose an extended definition of quasigeodesics in the intrinsic setting of (not necessarily convex) polyhedral spheres, and to prove the existence of a weakly simple closed quasigeodesic in such a setting. Our proof does not proceed via an approximation by smooth surfaces, but relies on an adaptation of the disk flow of Hass and Scott to the context of polyhedral surfaces. Our second result is to leverage this existence theorem to provide a finite algorithm to compute a weakly simple closed quasigeodesic on a polyhedral sphere. On a convex polyhedron, our algorithm computes a simple closed quasigeodesic, solving an open problem of Demaine, Hersterberg, and Ku.\",\"PeriodicalId\":356162,\"journal\":{\"name\":\"Discrete and Computational Geometry\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-023-00511-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00511-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finding Weakly Simple Closed Quasigeodesics on Polyhedral Spheres
A closed quasigeodesic on a convex polyhedron is a closed curve that is locally straight outside of the vertices, where it forms an angle at most $$\pi $$ on both sides. While the existence of a simple closed quasigeodesic on a convex polyhedron has been proved by Pogorelov in 1949, finding a polynomial-time algorithm to compute such a simple closed quasigeodesic has been repeatedly posed as an open problem. Our first contribution is to propose an extended definition of quasigeodesics in the intrinsic setting of (not necessarily convex) polyhedral spheres, and to prove the existence of a weakly simple closed quasigeodesic in such a setting. Our proof does not proceed via an approximation by smooth surfaces, but relies on an adaptation of the disk flow of Hass and Scott to the context of polyhedral surfaces. Our second result is to leverage this existence theorem to provide a finite algorithm to compute a weakly simple closed quasigeodesic on a polyhedral sphere. On a convex polyhedron, our algorithm computes a simple closed quasigeodesic, solving an open problem of Demaine, Hersterberg, and Ku.