{"title":"色彩空间欧几里得化的机器学习方法","authors":"Lia Ahrens, Julian Ahrens, Hans D. Schotten","doi":"10.1002/col.22897","DOIUrl":null,"url":null,"abstract":"<p>In this work, a machine learning methodology is proposed for the issue of color space Euclidization. Given a color difference formula as reference distance law, the Euclidization task consists in finding an injective transformation from the original color space into a real vector space and the corresponding inverse transformation, such that the Euclidean distances in the embedded color space align with the reference color distances. For this, artificial neural networks are devised as function approximators for the color space transformations being sought. Training these neural networks is accomplished through unsupervised learning, making use of random sampling and gradient descent. As key disagreement measure, either the (symmetric) relative isometric disagreement or the standardized residual sum of squares (STRESS) index is considered at a time and incorporated as part of the optimization criterion into the objective function. Comparative evaluation is carried out on well-established color distance laws, including the CIELAB-based DE2000 color difference formula. The evaluation results indicate significant performance advantages of the proposed approach over previous contributions.</p>","PeriodicalId":10459,"journal":{"name":"Color Research and Application","volume":"49 1","pages":"4-33"},"PeriodicalIF":1.2000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/col.22897","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach to color space Euclidization\",\"authors\":\"Lia Ahrens, Julian Ahrens, Hans D. Schotten\",\"doi\":\"10.1002/col.22897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a machine learning methodology is proposed for the issue of color space Euclidization. Given a color difference formula as reference distance law, the Euclidization task consists in finding an injective transformation from the original color space into a real vector space and the corresponding inverse transformation, such that the Euclidean distances in the embedded color space align with the reference color distances. For this, artificial neural networks are devised as function approximators for the color space transformations being sought. Training these neural networks is accomplished through unsupervised learning, making use of random sampling and gradient descent. As key disagreement measure, either the (symmetric) relative isometric disagreement or the standardized residual sum of squares (STRESS) index is considered at a time and incorporated as part of the optimization criterion into the objective function. Comparative evaluation is carried out on well-established color distance laws, including the CIELAB-based DE2000 color difference formula. The evaluation results indicate significant performance advantages of the proposed approach over previous contributions.</p>\",\"PeriodicalId\":10459,\"journal\":{\"name\":\"Color Research and Application\",\"volume\":\"49 1\",\"pages\":\"4-33\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/col.22897\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Color Research and Application\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/col.22897\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Color Research and Application","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/col.22897","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A machine learning approach to color space Euclidization
In this work, a machine learning methodology is proposed for the issue of color space Euclidization. Given a color difference formula as reference distance law, the Euclidization task consists in finding an injective transformation from the original color space into a real vector space and the corresponding inverse transformation, such that the Euclidean distances in the embedded color space align with the reference color distances. For this, artificial neural networks are devised as function approximators for the color space transformations being sought. Training these neural networks is accomplished through unsupervised learning, making use of random sampling and gradient descent. As key disagreement measure, either the (symmetric) relative isometric disagreement or the standardized residual sum of squares (STRESS) index is considered at a time and incorporated as part of the optimization criterion into the objective function. Comparative evaluation is carried out on well-established color distance laws, including the CIELAB-based DE2000 color difference formula. The evaluation results indicate significant performance advantages of the proposed approach over previous contributions.
期刊介绍:
Color Research and Application provides a forum for the publication of peer-reviewed research reviews, original research articles, and editorials of the highest quality on the science, technology, and application of color in multiple disciplines. Due to the highly interdisciplinary influence of color, the readership of the journal is similarly widespread and includes those in business, art, design, education, as well as various industries.