Xinmin Li, Feilong Li, Wing San Tony Hung, Zhengjie Qiu, Yonglong Wu, Runzhi Zhang
{"title":"大功率磁齿轮调速方法研究","authors":"Xinmin Li, Feilong Li, Wing San Tony Hung, Zhengjie Qiu, Yonglong Wu, Runzhi Zhang","doi":"10.3233/jae-230046","DOIUrl":null,"url":null,"abstract":"Magnetic gears have attracted the attention of many scholars due to their advantages of low noise, maintenance free, high torque density and inherent overload protection. In this paper, three speed regulation methods of high power magnetic gear transmission system are summarized and proposed, and the finite element analysis of the three speed regulation methods is carried out by COMSOL Multiphysics simulation software. The results show that when the sizes of the three magnetic gears are similar, the output torque and load power of the speed regulation method of the magnetic gear using the magnetic field modulated type is the largest. On the contrary, the axial magnetic gear with air gap length regulation method has the lowest output torque and load capacity. Compared with the other two methods, the coupling length regulation method has the minimum eddy current loss and the simple speed regulation structure, which is the most suitable for high power magnetic gear.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"28 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on speed regulation method of high power magnetic gear\",\"authors\":\"Xinmin Li, Feilong Li, Wing San Tony Hung, Zhengjie Qiu, Yonglong Wu, Runzhi Zhang\",\"doi\":\"10.3233/jae-230046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic gears have attracted the attention of many scholars due to their advantages of low noise, maintenance free, high torque density and inherent overload protection. In this paper, three speed regulation methods of high power magnetic gear transmission system are summarized and proposed, and the finite element analysis of the three speed regulation methods is carried out by COMSOL Multiphysics simulation software. The results show that when the sizes of the three magnetic gears are similar, the output torque and load power of the speed regulation method of the magnetic gear using the magnetic field modulated type is the largest. On the contrary, the axial magnetic gear with air gap length regulation method has the lowest output torque and load capacity. Compared with the other two methods, the coupling length regulation method has the minimum eddy current loss and the simple speed regulation structure, which is the most suitable for high power magnetic gear.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jae-230046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Research on speed regulation method of high power magnetic gear
Magnetic gears have attracted the attention of many scholars due to their advantages of low noise, maintenance free, high torque density and inherent overload protection. In this paper, three speed regulation methods of high power magnetic gear transmission system are summarized and proposed, and the finite element analysis of the three speed regulation methods is carried out by COMSOL Multiphysics simulation software. The results show that when the sizes of the three magnetic gears are similar, the output torque and load power of the speed regulation method of the magnetic gear using the magnetic field modulated type is the largest. On the contrary, the axial magnetic gear with air gap length regulation method has the lowest output torque and load capacity. Compared with the other two methods, the coupling length regulation method has the minimum eddy current loss and the simple speed regulation structure, which is the most suitable for high power magnetic gear.
期刊介绍:
The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are:
Physics and mechanics of electromagnetic materials and devices
Computational electromagnetics in materials and devices
Applications of electromagnetic fields and materials
The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics.
The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.