{"title":"非对称多人游戏中的内省动态","authors":"Marta C. Couto, Saptarshi Pal","doi":"10.1007/s13235-023-00525-8","DOIUrl":null,"url":null,"abstract":"Abstract Evolutionary game theory and models of learning provide powerful frameworks to describe strategic decision-making in social interactions. In the simplest case, these models describe games among two identical players. However, many interactions in everyday life are more complex. They involve more than two players who may differ in their available actions and in their incentives to choose each action. Such interactions can be captured by asymmetric multiplayer games. Recently, introspection dynamics has been introduced to explore such asymmetric games. According to this dynamics, at each time step players compare their current strategy to an alternative strategy. If the alternative strategy results in a payoff advantage, it is more likely adopted. This model provides a simple way to compute the players’ long-run probability of adopting each of their strategies. In this paper, we extend some of the previous results of introspection dynamics for 2-player asymmetric games to games with arbitrarily many players. First, we derive a formula that allows us to numerically compute the stationary distribution of introspection dynamics for any multiplayer asymmetric game. Second, we obtain explicit expressions of the stationary distribution for two special cases. These cases are additive games (where the payoff difference that a player gains by unilaterally switching to a different action is independent of the actions of their co-players), and symmetric multiplayer games with two strategies. To illustrate our results, we revisit several classical games such as the public goods game.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Introspection Dynamics in Asymmetric Multiplayer Games\",\"authors\":\"Marta C. Couto, Saptarshi Pal\",\"doi\":\"10.1007/s13235-023-00525-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Evolutionary game theory and models of learning provide powerful frameworks to describe strategic decision-making in social interactions. In the simplest case, these models describe games among two identical players. However, many interactions in everyday life are more complex. They involve more than two players who may differ in their available actions and in their incentives to choose each action. Such interactions can be captured by asymmetric multiplayer games. Recently, introspection dynamics has been introduced to explore such asymmetric games. According to this dynamics, at each time step players compare their current strategy to an alternative strategy. If the alternative strategy results in a payoff advantage, it is more likely adopted. This model provides a simple way to compute the players’ long-run probability of adopting each of their strategies. In this paper, we extend some of the previous results of introspection dynamics for 2-player asymmetric games to games with arbitrarily many players. First, we derive a formula that allows us to numerically compute the stationary distribution of introspection dynamics for any multiplayer asymmetric game. Second, we obtain explicit expressions of the stationary distribution for two special cases. These cases are additive games (where the payoff difference that a player gains by unilaterally switching to a different action is independent of the actions of their co-players), and symmetric multiplayer games with two strategies. To illustrate our results, we revisit several classical games such as the public goods game.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13235-023-00525-8\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13235-023-00525-8","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Introspection Dynamics in Asymmetric Multiplayer Games
Abstract Evolutionary game theory and models of learning provide powerful frameworks to describe strategic decision-making in social interactions. In the simplest case, these models describe games among two identical players. However, many interactions in everyday life are more complex. They involve more than two players who may differ in their available actions and in their incentives to choose each action. Such interactions can be captured by asymmetric multiplayer games. Recently, introspection dynamics has been introduced to explore such asymmetric games. According to this dynamics, at each time step players compare their current strategy to an alternative strategy. If the alternative strategy results in a payoff advantage, it is more likely adopted. This model provides a simple way to compute the players’ long-run probability of adopting each of their strategies. In this paper, we extend some of the previous results of introspection dynamics for 2-player asymmetric games to games with arbitrarily many players. First, we derive a formula that allows us to numerically compute the stationary distribution of introspection dynamics for any multiplayer asymmetric game. Second, we obtain explicit expressions of the stationary distribution for two special cases. These cases are additive games (where the payoff difference that a player gains by unilaterally switching to a different action is independent of the actions of their co-players), and symmetric multiplayer games with two strategies. To illustrate our results, we revisit several classical games such as the public goods game.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.