EIT源分离标杆快速四维有限元模型

Q4 Engineering
Diogo Filipe Silva, Steffen Leonhardt
{"title":"EIT源分离标杆快速四维有限元模型","authors":"Diogo Filipe Silva, Steffen Leonhardt","doi":"10.1515/cdbme-2023-1097","DOIUrl":null,"url":null,"abstract":"Abstract The accurate separation of cardiac and ventilatory contributions to electrical impedance tomography signals is crucial for complete and non-invasive cardiorespiratory monitoring. However, no consensus on a suitable source separation algorithm was achieved despite several proposals due to lacking systematic evaluation. To address this, we propose a benchmarking 4D finite element method generative model for mixed, cardiac, and ventilatory signals. Our model implements dynamic modelling of the heart, lungs, and pulmonary arteries using realistic volume and flow curve templates, along with cardiac and respiratory frequency coupling.We also employed variable alveolar and blood conductivities. The model was able to obtain long recordings faster than comparably complex models while maintaining significant physiological effects and signal properties such as non-stationarity, spatial delays, time and frequency profiles. The realistic physiological model can be used to taxonomize and evaluate source separation algorithms, as well as aid in the development and training of new ones.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast 4D FEM Model for EIT Source Separation Benchmarking\",\"authors\":\"Diogo Filipe Silva, Steffen Leonhardt\",\"doi\":\"10.1515/cdbme-2023-1097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The accurate separation of cardiac and ventilatory contributions to electrical impedance tomography signals is crucial for complete and non-invasive cardiorespiratory monitoring. However, no consensus on a suitable source separation algorithm was achieved despite several proposals due to lacking systematic evaluation. To address this, we propose a benchmarking 4D finite element method generative model for mixed, cardiac, and ventilatory signals. Our model implements dynamic modelling of the heart, lungs, and pulmonary arteries using realistic volume and flow curve templates, along with cardiac and respiratory frequency coupling.We also employed variable alveolar and blood conductivities. The model was able to obtain long recordings faster than comparably complex models while maintaining significant physiological effects and signal properties such as non-stationarity, spatial delays, time and frequency profiles. The realistic physiological model can be used to taxonomize and evaluate source separation algorithms, as well as aid in the development and training of new ones.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

准确分离电阻抗断层扫描信号对心脏和通气的贡献对于完整和无创的心肺监测至关重要。然而,由于缺乏系统的评估,尽管有一些建议,但对合适的源分离算法没有达成共识。为了解决这个问题,我们提出了一个基准的四维有限元方法生成模型,用于混合,心脏和呼吸信号。我们的模型使用真实的体积和流量曲线模板,以及心脏和呼吸频率耦合,实现了心脏、肺和肺动脉的动态建模。我们还采用了可变肺泡和血液电导率。该模型能够比相当复杂的模型更快地获得长时间记录,同时保持显著的生理效应和信号特性,如非平稳性、空间延迟、时间和频率分布。真实的生理模型可以用来分类和评估源分离算法,也可以帮助开发和训练新的源分离算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast 4D FEM Model for EIT Source Separation Benchmarking
Abstract The accurate separation of cardiac and ventilatory contributions to electrical impedance tomography signals is crucial for complete and non-invasive cardiorespiratory monitoring. However, no consensus on a suitable source separation algorithm was achieved despite several proposals due to lacking systematic evaluation. To address this, we propose a benchmarking 4D finite element method generative model for mixed, cardiac, and ventilatory signals. Our model implements dynamic modelling of the heart, lungs, and pulmonary arteries using realistic volume and flow curve templates, along with cardiac and respiratory frequency coupling.We also employed variable alveolar and blood conductivities. The model was able to obtain long recordings faster than comparably complex models while maintaining significant physiological effects and signal properties such as non-stationarity, spatial delays, time and frequency profiles. The realistic physiological model can be used to taxonomize and evaluate source separation algorithms, as well as aid in the development and training of new ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信