OCT图像的增强和标记

Q4 Engineering
Karri Karthik, Manjunatha Mahadevappa
{"title":"OCT图像的增强和标记","authors":"Karri Karthik, Manjunatha Mahadevappa","doi":"10.1515/cdbme-2023-1137","DOIUrl":null,"url":null,"abstract":"Abstract Optical Coherence Tomography (OCT) is a noninvasive technique for visualizing retinal cross-sections, assisting in diagnosing and monitoring retinal diseases. This study presents an effective OCT image noise reduction and segmentation method. Due to the high resolution of our primary image database, a visual comparison of filter performance was challenging. To address this, we utilized a high-noise image dataset from Duke University, enabling a better evaluation of noise reduction filters. Our method was compared against eight widely-used image filters, including Gaussian, Low pass,Wavelet domain filtering, Lee filter, Anisotropic diffusion, Bilateral filter, Total variational filter, and BM3D filter. Both visual and quantitative analyses were conducted using no-reference performance parameters, namely Gradient Magnitude Similarity Deviation (GMSD), Standard Deviation of Wavelet Coefficients (SDWC), Focus Measure with Tengrade Variance (FMTV), Perception-based Image Quality Evaluator (PIQE), and Visual Information Fidelity (VIF). The results demonstrated the superiority of our proposed filter in terms of noise reduction performance while maintaining the sharpness of retinal layers. Quantitative analysis revealed notable performance gains, including improvements of 63.27% to 83.24% with GMSD, consistent edge strength enhancement of 9.4% to 9.97% using SDWC, gains in image quality between 51.99% and 54.64% with FMTV, performance improvements ranging from 7.25% to 23.97% in terms of PIQE, and a substantial increase in performance varying from 16.31% to 27.69% when assessing the impact on retinal layer quality using VIF. Using the Kruskal-Wallis test, our proposed noise reduction method shows statistical significance for all quantitative parameters. Additionally, our clustering algorithm effectively separated the foreground, including retinal layers and vitreous detachment, from the background and identified an area representing the region between retinal layers where fluid accumulates. We’ve successfully achieved OCT image enhancement, along with distinct foreground and background segmentation.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement and labelling of OCT images\",\"authors\":\"Karri Karthik, Manjunatha Mahadevappa\",\"doi\":\"10.1515/cdbme-2023-1137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Optical Coherence Tomography (OCT) is a noninvasive technique for visualizing retinal cross-sections, assisting in diagnosing and monitoring retinal diseases. This study presents an effective OCT image noise reduction and segmentation method. Due to the high resolution of our primary image database, a visual comparison of filter performance was challenging. To address this, we utilized a high-noise image dataset from Duke University, enabling a better evaluation of noise reduction filters. Our method was compared against eight widely-used image filters, including Gaussian, Low pass,Wavelet domain filtering, Lee filter, Anisotropic diffusion, Bilateral filter, Total variational filter, and BM3D filter. Both visual and quantitative analyses were conducted using no-reference performance parameters, namely Gradient Magnitude Similarity Deviation (GMSD), Standard Deviation of Wavelet Coefficients (SDWC), Focus Measure with Tengrade Variance (FMTV), Perception-based Image Quality Evaluator (PIQE), and Visual Information Fidelity (VIF). The results demonstrated the superiority of our proposed filter in terms of noise reduction performance while maintaining the sharpness of retinal layers. Quantitative analysis revealed notable performance gains, including improvements of 63.27% to 83.24% with GMSD, consistent edge strength enhancement of 9.4% to 9.97% using SDWC, gains in image quality between 51.99% and 54.64% with FMTV, performance improvements ranging from 7.25% to 23.97% in terms of PIQE, and a substantial increase in performance varying from 16.31% to 27.69% when assessing the impact on retinal layer quality using VIF. Using the Kruskal-Wallis test, our proposed noise reduction method shows statistical significance for all quantitative parameters. Additionally, our clustering algorithm effectively separated the foreground, including retinal layers and vitreous detachment, from the background and identified an area representing the region between retinal layers where fluid accumulates. We’ve successfully achieved OCT image enhancement, along with distinct foreground and background segmentation.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

光学相干断层扫描(OCT)是一种无创的视网膜横截面可视化技术,有助于诊断和监测视网膜疾病。本研究提出了一种有效的OCT图像降噪与分割方法。由于我们的主图像数据库的高分辨率,过滤器性能的视觉比较是具有挑战性的。为了解决这个问题,我们利用了杜克大学的高噪声图像数据集,以便更好地评估降噪滤波器。将该方法与高斯滤波、低通滤波、小波域滤波、李滤波、各向异性扩散滤波、双边滤波、全变分滤波和BM3D滤波等八种常用的图像滤波进行了比较。视觉和定量分析均采用无参考性能参数,即梯度幅度相似偏差(GMSD)、小波系数标准差(SDWC)、梯度方差焦点测量(FMTV)、基于感知的图像质量评估器(PIQE)和视觉信息保真度(VIF)。结果证明了我们提出的滤波器在保持视网膜层清晰度的同时,在降噪性能方面的优越性。定量分析显示了显著的性能提升,包括GMSD的63.27%至83.24%,SDWC的边缘强度一致性增强9.4%至9.97%,FMTV的图像质量提升在51.99%至54.64%之间,PIQE的性能提升幅度在7.25%至23.97%之间,VIF对视网膜层质量影响的性能提升幅度在16.31%至27.69%之间。通过Kruskal-Wallis检验,我们提出的降噪方法对所有定量参数都具有统计显著性。此外,我们的聚类算法有效地将前景(包括视网膜层和玻璃体脱离)从背景中分离出来,并识别出代表视网膜层之间液体积聚区域的区域。我们已经成功地实现了OCT图像增强,以及清晰的前景和背景分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancement and labelling of OCT images
Abstract Optical Coherence Tomography (OCT) is a noninvasive technique for visualizing retinal cross-sections, assisting in diagnosing and monitoring retinal diseases. This study presents an effective OCT image noise reduction and segmentation method. Due to the high resolution of our primary image database, a visual comparison of filter performance was challenging. To address this, we utilized a high-noise image dataset from Duke University, enabling a better evaluation of noise reduction filters. Our method was compared against eight widely-used image filters, including Gaussian, Low pass,Wavelet domain filtering, Lee filter, Anisotropic diffusion, Bilateral filter, Total variational filter, and BM3D filter. Both visual and quantitative analyses were conducted using no-reference performance parameters, namely Gradient Magnitude Similarity Deviation (GMSD), Standard Deviation of Wavelet Coefficients (SDWC), Focus Measure with Tengrade Variance (FMTV), Perception-based Image Quality Evaluator (PIQE), and Visual Information Fidelity (VIF). The results demonstrated the superiority of our proposed filter in terms of noise reduction performance while maintaining the sharpness of retinal layers. Quantitative analysis revealed notable performance gains, including improvements of 63.27% to 83.24% with GMSD, consistent edge strength enhancement of 9.4% to 9.97% using SDWC, gains in image quality between 51.99% and 54.64% with FMTV, performance improvements ranging from 7.25% to 23.97% in terms of PIQE, and a substantial increase in performance varying from 16.31% to 27.69% when assessing the impact on retinal layer quality using VIF. Using the Kruskal-Wallis test, our proposed noise reduction method shows statistical significance for all quantitative parameters. Additionally, our clustering algorithm effectively separated the foreground, including retinal layers and vitreous detachment, from the background and identified an area representing the region between retinal layers where fluid accumulates. We’ve successfully achieved OCT image enhancement, along with distinct foreground and background segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信