Gerhard Schmidt, Erik Engelhardt, Eric Elzenheimer, Johannes Hoffman, Tobias Schmidt, Adrian Zaman, Norbert Frey
{"title":"磁电传感器估算心肌电流密度的概念","authors":"Gerhard Schmidt, Erik Engelhardt, Eric Elzenheimer, Johannes Hoffman, Tobias Schmidt, Adrian Zaman, Norbert Frey","doi":"10.1515/cdbme-2023-1023","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we present a novel noninvasive approach to estimate current densities in the heart from magnetocardiography. The proposed algorithm uses nested optimization to model current densities in equally-sized voxels of myocardial tissue. First-order Thiran all-pass filters are used to describe the propagation between voxels.We demonstrate feasibility of the algorithm for a noise-free single-layer simulation. However, challenges remain, such as addressing measurement noise and optimizing propagation velocity. Overall, this approach has the potential to complement or replace invasive catheter-based electrophysiological studies for localization of arrhythmogenic tissue.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Concept for Myocardial Current Density Estimation with Magnetoelectric Sensors\",\"authors\":\"Gerhard Schmidt, Erik Engelhardt, Eric Elzenheimer, Johannes Hoffman, Tobias Schmidt, Adrian Zaman, Norbert Frey\",\"doi\":\"10.1515/cdbme-2023-1023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we present a novel noninvasive approach to estimate current densities in the heart from magnetocardiography. The proposed algorithm uses nested optimization to model current densities in equally-sized voxels of myocardial tissue. First-order Thiran all-pass filters are used to describe the propagation between voxels.We demonstrate feasibility of the algorithm for a noise-free single-layer simulation. However, challenges remain, such as addressing measurement noise and optimizing propagation velocity. Overall, this approach has the potential to complement or replace invasive catheter-based electrophysiological studies for localization of arrhythmogenic tissue.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A Concept for Myocardial Current Density Estimation with Magnetoelectric Sensors
Abstract In this paper we present a novel noninvasive approach to estimate current densities in the heart from magnetocardiography. The proposed algorithm uses nested optimization to model current densities in equally-sized voxels of myocardial tissue. First-order Thiran all-pass filters are used to describe the propagation between voxels.We demonstrate feasibility of the algorithm for a noise-free single-layer simulation. However, challenges remain, such as addressing measurement noise and optimizing propagation velocity. Overall, this approach has the potential to complement or replace invasive catheter-based electrophysiological studies for localization of arrhythmogenic tissue.