Maxim Fenko, Constantin Wiesener, Rima Fanaei Pirlar, Andrej Trampuz, Markus Valtin, Thomas Schauer
{"title":"开发一种电流控制刺激装置,用于研究电流对由生物膜引起的植入物感染的影响","authors":"Maxim Fenko, Constantin Wiesener, Rima Fanaei Pirlar, Andrej Trampuz, Markus Valtin, Thomas Schauer","doi":"10.1515/cdbme-2023-1028","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: Biofilms are bacterial communities that transform into a state enclosed in an extracellular polymeric substance, which makes them less susceptible to antibiotics. Those bacterial formations often develop on metal implants and cause chronic infections. Due to the severely reduced impact of antibiotics against biofilms, the effect of electric stimulation (on its own and in combination with antimicrobials) needs to be further observed, as available studies indicate a positive effect. Methods: Therefore, this work examined the development of a six-channel current-controlled stimulation setup, which enables further in vitro research on the effects of electric stimulation on biofilms. The setup controls the desired stimulation current through the load to counteract electrochemical processes, which constantly change its resistive and capacitive properties. Results: Each channel of the stimulator is able to operate within an amplitude range of 50 A to 1 mA, a frequency range of 0 Hz to 1 kHz, and a pulse width range of 50 s to 1 ms. The current control provides a sufficient rise time of 3.3 s for three different stimulation modes: constant direct current (DC), pulsed DC, and biphasic-pulsed alternating current (AC). Furthermore, a graphical user interface enables the user to regulate and observe the stimulation on a computer to which the stimulator device is connected. Conclusion: The achieved variety of stimulation parameters in one device makes it possible to analyze the effect of different stimulation paradigms on biofilms and therefore enables more in vitro research which is inevitable to develop a sufficient treatment for patients with biofilm-infected implants.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a current controlled stimulation setup for investigating the effect of electrical currents on implant infections caused by biofilms\",\"authors\":\"Maxim Fenko, Constantin Wiesener, Rima Fanaei Pirlar, Andrej Trampuz, Markus Valtin, Thomas Schauer\",\"doi\":\"10.1515/cdbme-2023-1028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: Biofilms are bacterial communities that transform into a state enclosed in an extracellular polymeric substance, which makes them less susceptible to antibiotics. Those bacterial formations often develop on metal implants and cause chronic infections. Due to the severely reduced impact of antibiotics against biofilms, the effect of electric stimulation (on its own and in combination with antimicrobials) needs to be further observed, as available studies indicate a positive effect. Methods: Therefore, this work examined the development of a six-channel current-controlled stimulation setup, which enables further in vitro research on the effects of electric stimulation on biofilms. The setup controls the desired stimulation current through the load to counteract electrochemical processes, which constantly change its resistive and capacitive properties. Results: Each channel of the stimulator is able to operate within an amplitude range of 50 A to 1 mA, a frequency range of 0 Hz to 1 kHz, and a pulse width range of 50 s to 1 ms. The current control provides a sufficient rise time of 3.3 s for three different stimulation modes: constant direct current (DC), pulsed DC, and biphasic-pulsed alternating current (AC). Furthermore, a graphical user interface enables the user to regulate and observe the stimulation on a computer to which the stimulator device is connected. Conclusion: The achieved variety of stimulation parameters in one device makes it possible to analyze the effect of different stimulation paradigms on biofilms and therefore enables more in vitro research which is inevitable to develop a sufficient treatment for patients with biofilm-infected implants.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Development of a current controlled stimulation setup for investigating the effect of electrical currents on implant infections caused by biofilms
Abstract Introduction: Biofilms are bacterial communities that transform into a state enclosed in an extracellular polymeric substance, which makes them less susceptible to antibiotics. Those bacterial formations often develop on metal implants and cause chronic infections. Due to the severely reduced impact of antibiotics against biofilms, the effect of electric stimulation (on its own and in combination with antimicrobials) needs to be further observed, as available studies indicate a positive effect. Methods: Therefore, this work examined the development of a six-channel current-controlled stimulation setup, which enables further in vitro research on the effects of electric stimulation on biofilms. The setup controls the desired stimulation current through the load to counteract electrochemical processes, which constantly change its resistive and capacitive properties. Results: Each channel of the stimulator is able to operate within an amplitude range of 50 A to 1 mA, a frequency range of 0 Hz to 1 kHz, and a pulse width range of 50 s to 1 ms. The current control provides a sufficient rise time of 3.3 s for three different stimulation modes: constant direct current (DC), pulsed DC, and biphasic-pulsed alternating current (AC). Furthermore, a graphical user interface enables the user to regulate and observe the stimulation on a computer to which the stimulator device is connected. Conclusion: The achieved variety of stimulation parameters in one device makes it possible to analyze the effect of different stimulation paradigms on biofilms and therefore enables more in vitro research which is inevitable to develop a sufficient treatment for patients with biofilm-infected implants.