Deep.Neural.Signal。Pre-Processor -迈向ai增强型端到端BCIs

Q4 Engineering
Leo Buron, Andreas Erbslöh, Karsten Seidl, Gregor Schiele, Karsten Seidl, Zia Ur-Rehman, Christian Klaes
{"title":"Deep.Neural.Signal。Pre-Processor -迈向ai增强型端到端BCIs","authors":"Leo Buron, Andreas Erbslöh, Karsten Seidl, Gregor Schiele, Karsten Seidl, Zia Ur-Rehman, Christian Klaes","doi":"10.1515/cdbme-2023-1118","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a software-based Python framework for developing future AI-enhanced end-to-end Brain-Computer-Interfaces (BCI). This framework contains modules from the emulated analogue front-end and from neural signal pre-processing for invasive neural applications. These modules can be assembled into several pipeline versions for evaluation and benchmarking. The aim of this framework is to accelerate the development of BCIs due to system-wide optimizations in order to set the requirements for hardware development without prior knowledge on the basis of accuracy (recall and precision) and latency. In the next step, the pipeline can be optimised for on-chip and embedded execution.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep.Neural.Signal.Pre-Processor - Towards Development of AI-enhanced End-to-End BCIs\",\"authors\":\"Leo Buron, Andreas Erbslöh, Karsten Seidl, Gregor Schiele, Karsten Seidl, Zia Ur-Rehman, Christian Klaes\",\"doi\":\"10.1515/cdbme-2023-1118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a software-based Python framework for developing future AI-enhanced end-to-end Brain-Computer-Interfaces (BCI). This framework contains modules from the emulated analogue front-end and from neural signal pre-processing for invasive neural applications. These modules can be assembled into several pipeline versions for evaluation and benchmarking. The aim of this framework is to accelerate the development of BCIs due to system-wide optimizations in order to set the requirements for hardware development without prior knowledge on the basis of accuracy (recall and precision) and latency. In the next step, the pipeline can be optimised for on-chip and embedded execution.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个基于软件的Python框架,用于开发未来ai增强的端到端脑机接口(BCI)。该框架包含来自仿真模拟前端和用于侵入性神经应用的神经信号预处理的模块。这些模块可以组装成几个管道版本,以进行评估和基准测试。该框架的目的是通过系统范围的优化来加速bci的开发,以便在没有基于准确性(召回率和精度)和延迟的先验知识的情况下设置硬件开发的需求。在下一步,流水线可以优化芯片上和嵌入式执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep.Neural.Signal.Pre-Processor - Towards Development of AI-enhanced End-to-End BCIs
Abstract This paper presents a software-based Python framework for developing future AI-enhanced end-to-end Brain-Computer-Interfaces (BCI). This framework contains modules from the emulated analogue front-end and from neural signal pre-processing for invasive neural applications. These modules can be assembled into several pipeline versions for evaluation and benchmarking. The aim of this framework is to accelerate the development of BCIs due to system-wide optimizations in order to set the requirements for hardware development without prior knowledge on the basis of accuracy (recall and precision) and latency. In the next step, the pipeline can be optimised for on-chip and embedded execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信