可重复多参数人工耳蜗植入试验的通用试验台

Q4 Engineering
Georg Böttcher-Rebmann, Vera Lange, Viktor Schell, Jakob Cramer, Thomas Lenarz, Thomas S. Rau
{"title":"可重复多参数人工耳蜗植入试验的通用试验台","authors":"Georg Böttcher-Rebmann, Vera Lange, Viktor Schell, Jakob Cramer, Thomas Lenarz, Thomas S. Rau","doi":"10.1515/cdbme-2023-1032","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: In cochlear implant surgery, the insertion of the electrode array (EA) into the cochlea is critical as its implementation can influence the preservation of residual hearing. Insertion tests are the primary method for basic research on parameters influencing the insertion and help to further improve the design of EAs and surgical techniques. With automated insertion devices close to clinical application, a consensus on optimal insertion parameters is needed, which requires reliable testing methods. Moreover, the limited availability of EAs needs to be considered. We propose a test setup that provides high repeatability and flexibility for various research questions. Methods: Design requirements for multiple types of experiments such as variability of insertion speed or trajectory as well as cochlear geometry guided the computer aided design of the test bench. Moreover, repeated insertions with the same EA were supposed to be possible. To evaluate its functionality, insertion tests into a 3D printed cochlea model were performed and recorded. Results: The central components of the test bench are a linear actuator driving the EA and a goniometer changing the orientation of the target - a cochlea model or a specimen. A force sensor can be mounted below the target to measure forces in its frame of reference. The experimental results show high reproducibility of insertion forces for recurring trajectories with a single EA. Conclusion: The test bench enables reproducible insertion tests with a high number of repetitions and reduced EA usage. This allows a more detailed investigation of broadly discussed influences on the insertion such as the insertion speed or trajectory as well as cochlear geometry and can thereby drive future EA development.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal test bench for repeatable multiparametric cochlear implant insertion tests\",\"authors\":\"Georg Böttcher-Rebmann, Vera Lange, Viktor Schell, Jakob Cramer, Thomas Lenarz, Thomas S. Rau\",\"doi\":\"10.1515/cdbme-2023-1032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: In cochlear implant surgery, the insertion of the electrode array (EA) into the cochlea is critical as its implementation can influence the preservation of residual hearing. Insertion tests are the primary method for basic research on parameters influencing the insertion and help to further improve the design of EAs and surgical techniques. With automated insertion devices close to clinical application, a consensus on optimal insertion parameters is needed, which requires reliable testing methods. Moreover, the limited availability of EAs needs to be considered. We propose a test setup that provides high repeatability and flexibility for various research questions. Methods: Design requirements for multiple types of experiments such as variability of insertion speed or trajectory as well as cochlear geometry guided the computer aided design of the test bench. Moreover, repeated insertions with the same EA were supposed to be possible. To evaluate its functionality, insertion tests into a 3D printed cochlea model were performed and recorded. Results: The central components of the test bench are a linear actuator driving the EA and a goniometer changing the orientation of the target - a cochlea model or a specimen. A force sensor can be mounted below the target to measure forces in its frame of reference. The experimental results show high reproducibility of insertion forces for recurring trajectories with a single EA. Conclusion: The test bench enables reproducible insertion tests with a high number of repetitions and reduced EA usage. This allows a more detailed investigation of broadly discussed influences on the insertion such as the insertion speed or trajectory as well as cochlear geometry and can thereby drive future EA development.\",\"PeriodicalId\":10739,\"journal\":{\"name\":\"Current Directions in Biomedical Engineering\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Directions in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cdbme-2023-1032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要导读:在人工耳蜗手术中,电极阵列(EA)插入耳蜗是至关重要的,因为它的实施会影响到残余听力的保存。插入试验是对影响插入的参数进行基础研究的主要方法,有助于进一步改进ea的设计和手术技术。随着自动插入装置接近临床应用,需要对最佳插入参数达成共识,这需要可靠的测试方法。此外,需要考虑ea的有限可用性。我们提出了一种测试设置,为各种研究问题提供高重复性和灵活性。方法:以插入速度或轨迹变化、耳蜗几何形状等多类型实验的设计要求为指导,对试验台进行计算机辅助设计。此外,具有相同EA的重复插入被认为是可能的。为了评估其功能,将其插入3D打印耳蜗模型并进行记录。结果:试验台的中心部件是驱动EA的线性驱动器和改变目标(耳蜗模型或标本)方向的测角仪。力传感器可以安装在目标的下方,以测量其参照系中的力。实验结果表明,单个EA对重复轨迹的插入力具有很高的再现性。结论:该试验台可以实现重复性插入试验,重复次数多,减少EA的使用。这允许更详细地研究广泛讨论的对插入的影响,如插入速度或轨迹以及耳蜗几何形状,从而可以推动未来的EA发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal test bench for repeatable multiparametric cochlear implant insertion tests
Abstract Introduction: In cochlear implant surgery, the insertion of the electrode array (EA) into the cochlea is critical as its implementation can influence the preservation of residual hearing. Insertion tests are the primary method for basic research on parameters influencing the insertion and help to further improve the design of EAs and surgical techniques. With automated insertion devices close to clinical application, a consensus on optimal insertion parameters is needed, which requires reliable testing methods. Moreover, the limited availability of EAs needs to be considered. We propose a test setup that provides high repeatability and flexibility for various research questions. Methods: Design requirements for multiple types of experiments such as variability of insertion speed or trajectory as well as cochlear geometry guided the computer aided design of the test bench. Moreover, repeated insertions with the same EA were supposed to be possible. To evaluate its functionality, insertion tests into a 3D printed cochlea model were performed and recorded. Results: The central components of the test bench are a linear actuator driving the EA and a goniometer changing the orientation of the target - a cochlea model or a specimen. A force sensor can be mounted below the target to measure forces in its frame of reference. The experimental results show high reproducibility of insertion forces for recurring trajectories with a single EA. Conclusion: The test bench enables reproducible insertion tests with a high number of repetitions and reduced EA usage. This allows a more detailed investigation of broadly discussed influences on the insertion such as the insertion speed or trajectory as well as cochlear geometry and can thereby drive future EA development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信