非酉CFT的稳定性分析

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Masataka Watanabe
{"title":"非酉CFT的稳定性分析","authors":"Masataka Watanabe","doi":"10.1007/jhep11(2023)042","DOIUrl":null,"url":null,"abstract":"A bstract We study instability of lowest dimension operator (i.e., the imaginary part of its operator dimension) in the rank- Q traceless symmetric representation of the O ( N ) Wilson-Fisher fixed point in D = 4 + ϵ . We find a new semi-classical bounce solution, which gives an imaginary part to the operator dimension of order $$ O\\left({\\epsilon}^{-1/2}\\exp \\left[-\\frac{N+8}{3\\epsilon }F\\left(\\epsilon Q\\right)\\right]\\right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>O</mml:mi> <mml:mfenced> <mml:mrow> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>exp</mml:mo> <mml:mfenced> <mml:mrow> <mml:mo>−</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>ϵ</mml:mi> </mml:mrow> </mml:mfrac> <mml:mi>F</mml:mi> <mml:mfenced> <mml:mi>ϵQ</mml:mi> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:math> in the double-scaling limit where $$ \\epsilon Q\\le \\frac{N+8}{6\\sqrt{3}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϵQ</mml:mi> <mml:mo>≤</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>6</mml:mn> <mml:msqrt> <mml:mn>3</mml:mn> </mml:msqrt> </mml:mrow> </mml:mfrac> </mml:math> is fixed. The form of F ( ϵQ ), normalised as F (0) = 1, is also computed. This non-perturbative correction continues to give the leading effect even when Q is finite, indicating the instability of operators for any values of Q . We also observe a phase transition at $$ \\epsilon Q=\\frac{N+8}{6\\sqrt{3}} $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϵQ</mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>6</mml:mn> <mml:msqrt> <mml:mn>3</mml:mn> </mml:msqrt> </mml:mrow> </mml:mfrac> </mml:math> associated with the condensation of bounces, similar to the Gross-Witten-Wadia transition.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"72 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Stability analysis of a non-unitary CFT\",\"authors\":\"Masataka Watanabe\",\"doi\":\"10.1007/jhep11(2023)042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bstract We study instability of lowest dimension operator (i.e., the imaginary part of its operator dimension) in the rank- Q traceless symmetric representation of the O ( N ) Wilson-Fisher fixed point in D = 4 + ϵ . We find a new semi-classical bounce solution, which gives an imaginary part to the operator dimension of order $$ O\\\\left({\\\\epsilon}^{-1/2}\\\\exp \\\\left[-\\\\frac{N+8}{3\\\\epsilon }F\\\\left(\\\\epsilon Q\\\\right)\\\\right]\\\\right) $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>O</mml:mi> <mml:mfenced> <mml:mrow> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> <mml:mo>exp</mml:mo> <mml:mfenced> <mml:mrow> <mml:mo>−</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>3</mml:mn> <mml:mi>ϵ</mml:mi> </mml:mrow> </mml:mfrac> <mml:mi>F</mml:mi> <mml:mfenced> <mml:mi>ϵQ</mml:mi> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:mrow> </mml:mfenced> </mml:math> in the double-scaling limit where $$ \\\\epsilon Q\\\\le \\\\frac{N+8}{6\\\\sqrt{3}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ϵQ</mml:mi> <mml:mo>≤</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>6</mml:mn> <mml:msqrt> <mml:mn>3</mml:mn> </mml:msqrt> </mml:mrow> </mml:mfrac> </mml:math> is fixed. The form of F ( ϵQ ), normalised as F (0) = 1, is also computed. This non-perturbative correction continues to give the leading effect even when Q is finite, indicating the instability of operators for any values of Q . We also observe a phase transition at $$ \\\\epsilon Q=\\\\frac{N+8}{6\\\\sqrt{3}} $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>ϵQ</mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>8</mml:mn> </mml:mrow> <mml:mrow> <mml:mn>6</mml:mn> <mml:msqrt> <mml:mn>3</mml:mn> </mml:msqrt> </mml:mrow> </mml:mfrac> </mml:math> associated with the condensation of bounces, similar to the Gross-Witten-Wadia transition.\",\"PeriodicalId\":48906,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/jhep11(2023)042\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)042","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 4

摘要

研究了D = 4 + ε中O (N) Wilson-Fisher不动点的秩- Q无迹对称表示中最低维算子(即算子维数的虚部)的不稳定性。我们找到了一个新的半经典反弹解,它给出了二阶算子维的虚部$$ O\left({\epsilon}^{-1/2}\exp \left[-\frac{N+8}{3\epsilon }F\left(\epsilon Q\right)\right]\right) $$ O λ−1 / 2 exp−N + 8 3 λ F ϵQ,其中$$ \epsilon Q\le \frac{N+8}{6\sqrt{3}} $$ ϵQ≤N + 8 6 3是固定的。F (ϵQ)的形式,归一化为F(0) = 1,也被计算。这种非微扰校正即使在Q是有限的情况下也继续给出主导效应,这表明对于任何Q值,算子都是不稳定的。我们还观察到在$$ \epsilon Q=\frac{N+8}{6\sqrt{3}} $$ ϵQ = N + 8 6 3处与反弹凝聚相关的相变,类似于Gross-Witten-Wadia相变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of a non-unitary CFT
A bstract We study instability of lowest dimension operator (i.e., the imaginary part of its operator dimension) in the rank- Q traceless symmetric representation of the O ( N ) Wilson-Fisher fixed point in D = 4 + ϵ . We find a new semi-classical bounce solution, which gives an imaginary part to the operator dimension of order $$ O\left({\epsilon}^{-1/2}\exp \left[-\frac{N+8}{3\epsilon }F\left(\epsilon Q\right)\right]\right) $$ O ϵ 1 / 2 exp N + 8 3 ϵ F ϵQ in the double-scaling limit where $$ \epsilon Q\le \frac{N+8}{6\sqrt{3}} $$ ϵQ N + 8 6 3 is fixed. The form of F ( ϵQ ), normalised as F (0) = 1, is also computed. This non-perturbative correction continues to give the leading effect even when Q is finite, indicating the instability of operators for any values of Q . We also observe a phase transition at $$ \epsilon Q=\frac{N+8}{6\sqrt{3}} $$ ϵQ = N + 8 6 3 associated with the condensation of bounces, similar to the Gross-Witten-Wadia transition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信