{"title":"声控个人助理和隐私问题:一项Twitter分析","authors":"Miriam Alzate, Marta Arce Urriza, Monica Cortiñas","doi":"10.1108/jrim-02-2023-0050","DOIUrl":null,"url":null,"abstract":"Purpose This study aims to understand the extent of privacy concerns regarding voice-activated personal assistants (VAPAs) on Twitter. It investigates three key areas: (1) the effect of privacy-related press coverage on public sentiment and discussion volume; (2) the comparative negativity of privacy-focused conversations versus general conversations; and (3) the specific privacy-related topics that arise most frequently and their impact on sentiment and discussion volume. Design/methodology/approach A dataset of 441,427 tweets mentioning Amazon Alexa, Google Assistant, and Apple Siri from July 1, 2019 to June 30, 2021 were collected. Privacy-related press coverage has also been monitored. Sentiment analysis was conducted using the dictionary-based software LIWC and VADER, whereas text mining packages in R were used to identify privacy-related issues. Findings Negative privacy-related news significantly increases both negativity and volume in Twitter conversations, whereas positive news only boosts volume. Privacy-related tweets were notably more negative than general tweets. Specific keywords were found to either increase or decrease the sentiment and discussion volume. Additionally, a temporal evolution in sentiment, with general attitudes toward VAPAs becoming more positive, but privacy-specific discussions becoming more negative was observed. Originality/value This research augments the existing online privacy literature by employing text mining methodologies to gauge consumer sentiments regarding privacy concerns linked to VAPAs, a topic currently underexplored. Furthermore, this research uniquely integrates established theories from privacy calculus and social contract theory to deepen our analysis.","PeriodicalId":47116,"journal":{"name":"Journal of Research in Interactive Marketing","volume":"147 1‐5","pages":"0"},"PeriodicalIF":9.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voice-activated personal assistants and privacy concerns: a Twitter analysis\",\"authors\":\"Miriam Alzate, Marta Arce Urriza, Monica Cortiñas\",\"doi\":\"10.1108/jrim-02-2023-0050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose This study aims to understand the extent of privacy concerns regarding voice-activated personal assistants (VAPAs) on Twitter. It investigates three key areas: (1) the effect of privacy-related press coverage on public sentiment and discussion volume; (2) the comparative negativity of privacy-focused conversations versus general conversations; and (3) the specific privacy-related topics that arise most frequently and their impact on sentiment and discussion volume. Design/methodology/approach A dataset of 441,427 tweets mentioning Amazon Alexa, Google Assistant, and Apple Siri from July 1, 2019 to June 30, 2021 were collected. Privacy-related press coverage has also been monitored. Sentiment analysis was conducted using the dictionary-based software LIWC and VADER, whereas text mining packages in R were used to identify privacy-related issues. Findings Negative privacy-related news significantly increases both negativity and volume in Twitter conversations, whereas positive news only boosts volume. Privacy-related tweets were notably more negative than general tweets. Specific keywords were found to either increase or decrease the sentiment and discussion volume. Additionally, a temporal evolution in sentiment, with general attitudes toward VAPAs becoming more positive, but privacy-specific discussions becoming more negative was observed. Originality/value This research augments the existing online privacy literature by employing text mining methodologies to gauge consumer sentiments regarding privacy concerns linked to VAPAs, a topic currently underexplored. Furthermore, this research uniquely integrates established theories from privacy calculus and social contract theory to deepen our analysis.\",\"PeriodicalId\":47116,\"journal\":{\"name\":\"Journal of Research in Interactive Marketing\",\"volume\":\"147 1‐5\",\"pages\":\"0\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research in Interactive Marketing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/jrim-02-2023-0050\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research in Interactive Marketing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/jrim-02-2023-0050","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
Voice-activated personal assistants and privacy concerns: a Twitter analysis
Purpose This study aims to understand the extent of privacy concerns regarding voice-activated personal assistants (VAPAs) on Twitter. It investigates three key areas: (1) the effect of privacy-related press coverage on public sentiment and discussion volume; (2) the comparative negativity of privacy-focused conversations versus general conversations; and (3) the specific privacy-related topics that arise most frequently and their impact on sentiment and discussion volume. Design/methodology/approach A dataset of 441,427 tweets mentioning Amazon Alexa, Google Assistant, and Apple Siri from July 1, 2019 to June 30, 2021 were collected. Privacy-related press coverage has also been monitored. Sentiment analysis was conducted using the dictionary-based software LIWC and VADER, whereas text mining packages in R were used to identify privacy-related issues. Findings Negative privacy-related news significantly increases both negativity and volume in Twitter conversations, whereas positive news only boosts volume. Privacy-related tweets were notably more negative than general tweets. Specific keywords were found to either increase or decrease the sentiment and discussion volume. Additionally, a temporal evolution in sentiment, with general attitudes toward VAPAs becoming more positive, but privacy-specific discussions becoming more negative was observed. Originality/value This research augments the existing online privacy literature by employing text mining methodologies to gauge consumer sentiments regarding privacy concerns linked to VAPAs, a topic currently underexplored. Furthermore, this research uniquely integrates established theories from privacy calculus and social contract theory to deepen our analysis.
期刊介绍:
The mission of the Journal of Research in Interactive Marketing is to address substantive issues in interactive, relationship, electronic, direct and multi-channel marketing and marketing management.
ISSN: 2040-7122
eISSN: 2040-7122
With its origins in the discipline and practice of direct marketing, the Journal of Research in Interactive Marketing (JRIM) aims to publish progressive, innovative and rigorous scholarly research for marketing academics and practitioners.